
1 
 

Notes for 6.826 lecture 6—Refinement 
 
Agenda for today: 
 Review definition of implements, with cache example 
 Too much spec state → History variables, with StatDB example 
 Abstraction relations ↔ history variables 
 Premature choice → prophecy variables 
 
Specs for sequential procedures: code relation <= spec relation. That is, the final state of the code 

is allowed by the spec (partial correctness) + termination (total correctness) 
 
Definition: External code traces <= external spec traces 
 Note: this throws away a lot of information: internal state and actions 
 Safety (never anything bad) and liveness (eventually something good) 
Basic idea: simulation, showing that code matches spec one action at a time 
 
Simple example: memory with cache code. 
Note: a command (that changes the state or is non-deterministic) that returns a value can only ap-

pear by itself on the right hand side of an assignment; the meaning is that the command does its thing, 
and in addition the value of the left hand side is changed. An expression is a mathematical expression, 
that is, it doesn’t change the state and it’s deterministic. 

 
𝐭𝐲𝐩𝐞 𝑀  = 𝐴 → 𝑉 also called a key-value store 
𝐯𝐚𝐫 𝑚  :   𝑀 ≔ 𝑖𝑛𝑖𝑡𝑀() 
 
𝑖𝑛𝑖𝑡𝑀(): 𝑀 = 𝐯𝐚𝐫 𝑚ᇱ | ∀ 𝑎, 𝑚ᇱ(𝑎) ≠ 𝑁𝑜𝑛𝑒;  𝐫𝐞𝐭 𝑚′ 𝑚′ arbitrary, defined everywhere 

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑚(𝑎) 
𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑚(𝑎) ≔ 𝑣 
 
𝐭𝐲𝐩𝐞 𝐶  = 𝐴 → 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉  𝑐 is defined at only a few 𝐴’s 

𝐯𝐚𝐫  𝑚𝑐  :   𝑀 ∶= 𝑖𝑛𝑖𝑡𝑀() memory in the code 
𝑐  :   𝐶 ≔ 𝑖𝑛𝑖𝑡𝐶() 

 
𝑖𝑛𝑖𝑡𝐶(): 𝐶 = 𝐯𝐚𝐫 𝑐 | {𝑎 | 𝑐ᇱ(𝑎) ≠ 𝑁𝑜𝑛𝑒}. 𝑠𝑖𝑧𝑒 = 𝑐𝑆𝑖𝑧𝑒; 𝑐′ arbitrary, defined at 𝑐𝑆𝑖𝑧𝑒 𝐴’s  

    𝐫𝐞𝐭 𝑐′  
 

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑙𝑜𝑎𝑑(𝑎); 𝐫𝐞𝐭 𝑐(𝑎) 
𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑙𝑜𝑎𝑑(𝑎); 𝑐(𝑎) ≔ 𝑣 
 
Internal 
𝑙𝑜𝑎𝑑(𝑎) = 𝐢𝐟 𝑐(𝑎) = 𝑁𝑜𝑛𝑒 if 𝑎 isn’t in the cache 

    𝐭𝐡𝐞𝐧 {𝑓𝑙𝑢𝑠ℎ𝑂𝑛𝑒(); 𝑐(𝑎) ≔ 𝑚𝑐(𝑎)} make space for it and put it there 
𝑓𝑙𝑢𝑠ℎ𝑂𝑛𝑒() = 𝐯𝐚𝐫 𝑎 | 𝑐(𝑎) ≠ 𝑁𝑜𝑛𝑒; pick an 𝑎 in the cache 

    𝐢𝐟 𝑐(𝑎) ≠ 𝑚𝑐(𝑎) 𝐭𝐡𝐞𝐧 𝑚𝑐(𝑎) ≔ 𝑐(𝑎); write it back to 𝑚 if necessary 

    𝑐(𝑎) ≔ 𝑁𝑜𝑛𝑒 and remove it from the cache 
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Note: the spec is deterministic, but the code is not. 
 
Abstraction function 
It has to take the code state (𝑚, 𝑐) to the spec state 𝑚. 
𝑚 = 𝑚𝑐 + 𝑐 % function overlay 
Writing this out 
𝑚 = 𝐟𝐮𝐧 𝑎 ⟹ 𝐢𝐟 𝑐(𝑎) = 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑚𝑐(𝑎) 𝐞𝐥𝐬𝐞 𝑐(𝑎)  
 
Why code to spec? Because code has many ways to represent the spec in general, as in the cache 

example. 
This isn’t always true, though. Sometimes it’s clearer to write the spec with more state. 
 
An abstraction function F is required to satisfy the following two conditions. 

1. If 𝑡 is any initial state of 𝑇, then 𝐹(𝑡) is an initial state of 𝑆. 

2. (Simulation) If 𝑡 is a reachable state of 𝑇 and (𝑡, 𝑝, 𝑡′) is a step of 𝑇, then there is a step of 𝑆 from 
𝐹(𝑡) to 𝐹(𝑡′) that has the same trace. 
 

The diagram commutes 
 
Theorem 1: If there is an abstraction function from 𝑇 to 𝑆, then 𝑇 implements 𝑆, i.e., every trace 

of 𝑇 is a trace of 𝑆. 
Why: Induction on the length of the trace. 
 
Digression on naming actions 
There are (at least) two ways to identify the actions. The way in the diagram and in the code we 

have written names an action by an identifier for the action’s code, such as 𝑟𝑒𝑎𝑑, and the values of all 
the arguments and results. Thus 𝑟𝑒𝑎𝑑(𝑎) → 3 or 𝑟𝑒𝑎𝑑(𝑎, 3).  

The other way only talks about state, and it makes the calling sequence of the code explicit with 
state variables for the arguments and results. So memory has variables 𝑑𝑜𝑅𝑒𝑎𝑑, 𝑑𝑜𝑊𝑟𝑖𝑡𝑒, 𝑎, 𝑣, and 
the action named 𝑟𝑒𝑎𝑑(𝑏, 𝑢) corresponds to the steps 𝑎 ≔ 𝑏, 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑡𝑟𝑢𝑒 and 𝑣 ≔
𝑢, 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑓𝑎𝑙𝑠𝑒 (that is, memory sets 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑓𝑎𝑙𝑠𝑒 when the result is ready. 

 
An invariant of a module is any property that is true of all reachable states of the module. 
To use the abstraction function scheme, we must show that the code simulates the spec from eve-

ry reachable state, and the invariant precisely characterizes the reachable states. It usually isn’t true 
that the code simulates the spec from every state. 

 

  

  
F(t) F(t') 

t t' 

F F 
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The usual way to prove that a property 𝑃 is an invariant is by induction on the length of finite ex-
ecutions. 

There is no invariant for the WB cache. But hash table code for the memory spec would have one, 
saying that if 𝑣 is in the bucket with hash ℎ, then ℎ𝑎𝑠ℎ(𝑣) = ℎ. 

 
Completeness and doctrine for specs: If we avoid extra state, too few or too many transitions, 

and premature choices in the spec, the simple abstraction function method will always work. You 
might therefore think that all these problems are not worth solving, because it sounds as though they 
are caused by bad choices in the way the spec is written. But this is wrong. A spec should be written 
to be as clear as possible to the clients, not to make it easy to prove the correctness of code for. 

History variables 

Notation: If 𝑞 is 𝐬𝐞𝐪 𝑇 or 𝐬𝐞𝐭 𝑇and 𝑜𝑝 is an operator or function that takes two 𝑇’s, (𝑜𝑝 ∶  𝑞) is  
𝑆𝑡𝑎𝑡𝐷𝐵. Definitions (from a textbook): 

𝑚𝑒𝑎𝑛 =
∑ ௗ()


, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  

∑ (ௗ()ି)మ



=

∑ ௗ()మ



− 𝑚𝑒𝑎𝑛ଶ 

 
𝐯𝐚𝐫 𝑑𝑏  :   𝐬𝐞𝐪 𝑉 ∶= {} a multiset; don’t care about the order 
 
𝑎𝑑𝑑(𝑣) = 𝑑𝑏 ≔ 𝑑𝑏 ++ {𝑣} 
𝑠𝑖𝑧𝑒(): 𝑁𝑎𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒 
𝑚𝑒𝑎𝑛(): 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉 = 𝐢𝐟 𝑑𝑏 = {} 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚(𝑑𝑏) 

𝑣𝑎𝑟𝑖() ∶ 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉 = 𝐢𝐟 𝑑𝑏 = {} 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞
௦௨൫൛௩∈ௗ | | (௩ି ())మൟ൯

ௗ.௦௭
 

 
And efficient code 
𝐯𝐚𝐫   𝑐𝑜𝑢𝑛𝑡 ≔ 0 

𝑠𝑢𝑚  ≔ 0 
𝑠𝑢𝑚𝑆𝑞  ≔ 0 
 

𝑎𝑑𝑑(𝑣) = 𝑐𝑜𝑢𝑛𝑡 ≔ 𝑐𝑜𝑢𝑛𝑡 + 1; 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑣; 𝑠𝑢𝑚𝑆𝑞 ≔ 𝑠𝑢𝑚𝑆𝑞 + 𝑣ଶ 
𝑚𝑒𝑎𝑛(): 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉 = 𝐢𝐟 𝑐𝑜𝑢𝑛𝑡 = 0 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚/𝑐𝑜𝑢𝑛𝑡 

𝑣𝑎𝑟𝑖() ∶ 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉 = 𝐢𝐟 𝑐𝑜𝑢𝑛𝑡 = 0 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞
௦௨ௌ

௨௧
− 𝑚𝑒𝑎𝑛()ଶ 

 
But there’s no AF, because the spec has more state than the code—there’s no way we can conjure 

up all of 𝑑𝑏 from the three 𝑁𝑎𝑡s in the code. This is not a sign of a bad spec; the job of the spec is to 
be clear, not to be efficient. To get an AF, we must add history variables: variables that are added to 
the state of the code T in order to keep track of the extra information in the spec S that was left out of 
the code. 

In this case, we just add 𝑑𝑏, the entire state of the spec. That always works, but often you can add 
less. The history variables are not allowed to affect the ordinary variables, so it’s obvious that the 
code with history variables and without have the same traces. 

So instead of 𝑐𝑜𝑑𝑒 → 𝑠𝑝𝑒𝑐, we have 𝑐𝑜𝑑𝑒 → 𝑐𝑜𝑑𝑒 + ℎ𝑖𝑠𝑡𝑜𝑟𝑦 → 𝑠𝑝𝑒𝑐. With the history, we can 
do an AF proof that 𝑐𝑜𝑑𝑒 + ℎ𝑖𝑠𝑡𝑜𝑟𝑦 → 𝑠𝑝𝑒𝑐, and it should be obvious that 𝑐𝑜𝑑𝑒 → 𝑐𝑜𝑑𝑒 + ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 
because the history is not allowed to affect the steps or the ordinary variables. 
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To do the AF proof for the efficient 𝑠𝑡𝑎𝑡𝐷𝐵 code we need an invariant that relates 𝑑𝑏 to the rest 
of the state. 

/\ 𝑐𝑜𝑢𝑛𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒   
/\ 𝑠𝑢𝑚 = (+ ∶ 𝑑𝑏)  
/\ 𝑠𝑢𝑚𝑆𝑞 = (+ ∶ {𝑣 ∈ 𝑑𝑏 | | 𝑣ଶ})  

Abstraction relations 

Another way to do the same thing is to generalize AFs to abstraction relations. R is an AR if 

1. If 𝑡 is any initial state of 𝑇, then there is an initial state 𝑠 of 𝑆 such that (𝑡, 𝑠) ∈ 𝑅. 

2. (Simulation) If 𝑡 and 𝑠 are reachable states of 𝑇 and 𝑆 with (𝑡, 𝑠) ∈ 𝑅 and (𝑡, 𝜋, 𝑡′) is a step of 𝑇, 
then there is a step of 𝑆 from 𝑠 to some 𝑠′ that has the same trace, and (𝑡′, 𝑠′) ∈ 𝑅. 
 

 
It’s sufficient to have a relation. A way to think of this is that the two modules, 𝑇 and 𝑆, are run-

ning in parallel. The execution is driven by module 𝑇, which executes in any arbitrary way. 𝑆 follows 
along, producing the same externally visible behavior. The two conditions above guarantee that there 
is always some way for 𝑆 to do this. 

 
Here’s the AR for 𝑆𝑡𝑎𝑡𝐷𝐵 

/\ 𝑐𝑜𝑢𝑛𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒   
/\ 𝑠𝑢𝑚 = (+ ∶ 𝑑𝑏)  
/\ 𝑠𝑢𝑚𝑆𝑞 = (+ ∶ {𝑣 ∈ 𝑑𝑏 | | 𝑣ଶ})  

It’s just the same as the invariant we had for the history variables. 

Taking several steps in the spec 

If t and s are reachable states of T and S respectively, with (t, s)  R, and (t, , t') is a step of T, 
then there is an execution fragment of S from s to some s', having the same trace, and with (t', s') 
 R. 
 
Usually there are many internal code steps for each spec step, e.g., machine instructions. Some-

times it’s convenient to have extra internal spec steps, such as the 𝐷𝑟𝑜𝑝 action in the async messag-
ing spec. 
  

s2 s2'

t't

AR
AR





s1 s1'

AR
AR
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Premature choice and prophecy variables 

Some realistic examples of premature choice in specs. 

Reliable two-party channel spec 

var  𝑐ℎ  : 𝐬𝐞𝐪 𝑀𝑠𝑔 channel 
 
𝑠𝑒𝑛𝑑(𝑚𝑠𝑔) = 𝑐ℎ ∶= 𝑐ℎ + + {𝑚𝑠𝑔} 
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑎𝑑𝑑𝑟) = 𝑚𝑠𝑔 = 𝑐ℎ . ℎ𝑒𝑎𝑑 →  𝑐ℎ ≔ 𝑐ℎ . 𝑡𝑎𝑖𝑙;  𝐫𝐞𝐭 𝑚𝑠𝑔  
 
𝑐𝑟𝑎𝑠ℎ  = 𝐯𝐚𝐫 𝑘𝑒𝑒𝑝 ⊆ 𝑐ℎ. 𝑑𝑜𝑚; 𝑐ℎ ∶= 𝑘𝑒𝑒𝑝. 𝑠𝑜𝑟𝑡 ∘ 𝑐ℎ 
 
Most practical code (for instance, the Internet’s TCP protocol) has cases in which it isn’t known 

whether a message will be lost until long after the crash. This is because they ensure FIFO delivery, 
and get rid of retransmitted duplicates, by numbering messages sequentially and discarding any re-
ceived message with an earlier sequence number than the largest one already received. If the underly-
ing message transport is not FIFO (like the Internet) and there are two undelivered messages out-
standing (which can happen after a crash), the earlier one will be lost if and only if the later one over-
takes it. You don’t know until the overtaking happens whether the first message will be lost. By this 
time the crash and subsequent recovery may be long since over. 

To fix this, mark in-flight messages: 
var  𝑐ℎ  : 𝐬𝐞𝐪 (𝑀𝑠𝑔, 𝐵𝑜𝑜𝑙) channel 
 
𝑠𝑒𝑛𝑑(𝑚𝑠𝑔) = 𝑐ℎ ∶= 𝑐ℎ + + {(𝑚𝑠𝑔, 𝑓𝑎𝑙𝑠𝑒)} 
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑎𝑑𝑑𝑟) = 𝑡 = 𝑐ℎ . ℎ𝑒𝑎𝑑 →  𝑐ℎ ≔ 𝑐ℎ . 𝑡𝑎𝑖𝑙; 𝐫𝐞𝐭 𝑡. 𝑚𝑠𝑔  
𝑑𝑟𝑜𝑝  =  𝑡 = 𝑐ℎ . ℎ𝑒𝑎𝑑 ∧ 𝑡. 𝑚𝑎𝑟𝑘 →  𝑐ℎ ≔ 𝑐ℎ . 𝑡𝑎𝑖𝑙 
 
𝑐𝑟𝑎𝑠ℎ  = 𝑐ℎ ∶= 𝑚𝑎𝑝(൫𝐟𝐮𝐧 (𝑚, 𝑏) → (𝑀𝑠𝑔, 𝐵𝑜𝑜𝑙) ⟹ (𝑚, 𝑡𝑟𝑢𝑒)൯, 𝑐ℎ) 
 

Consensus spec 

var  𝑜𝑢𝑡𝑐𝑜𝑚𝑒  : 𝐨𝐩𝐭𝐢𝐨𝐧 𝑉 ≔ 𝑁𝑜𝑛𝑒  data value to agree on 
𝑎𝑙𝑙𝑜𝑤(𝑣) = 𝐯𝐚𝐫 𝑜 ∈ {𝑣, 𝑁𝑜𝑛𝑒}; optionally accept v 

    𝐢𝐟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≔ 𝑜 if 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 is 𝑁𝑜𝑛𝑒 

𝑟𝑒𝑠𝑢𝑙𝑡():option 𝑉 = 𝐯𝐚𝐫 𝑜 ∈ {𝑜𝑢𝑡𝑐𝑜𝑚𝑒, 𝑁𝑜𝑛𝑒}; 𝑜 optionally return 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 

 
This spec chooses the value to agree on as soon as the value is allowed. 𝑟𝑒𝑠𝑢𝑙𝑡 may return 𝑁𝑜𝑛𝑒 

even after the choice is made because in distributed code it’s possible that not all the participants have 
heard what the outcome is. 

Code for almost certainly saves up the allowed values and does a lot of communication among the 
processes to come to an agreement. The following spec has that form. It includes the spec above 
except for 𝑎𝑙𝑙𝑜𝑤, and adds 

𝐯𝐚𝐫 𝑎𝑙𝑙𝑜𝑤𝑒𝑑  :   𝐬𝐞𝐭 𝑉 ≔ {}  data value to agree on 
𝑎𝑙𝑙𝑜𝑤(𝑣) = 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ≔ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 + {𝑣} remember 𝑣 

𝑎𝑔𝑟𝑒𝑒() = 𝐯𝐚𝐫 𝑜 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∪ {𝑁𝑜𝑛𝑒}; 𝐢𝐟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≔ 𝑜 
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Note that if 𝑟𝑒𝑠𝑢𝑙𝑡 didn’t have the option to return 𝑁𝑜𝑛𝑒 even after 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≠ 𝑁𝑜𝑛𝑒, these 
specs would not be equivalent, because the second would allow the behavior 

𝑎𝑙𝑙𝑜𝑤(1);  𝑟𝑒𝑠𝑢𝑙𝑡() = 𝑁𝑜𝑛𝑒;  𝑎𝑙𝑙𝑜𝑤(2);  𝑟𝑒𝑠𝑢𝑙𝑡() = 1  
and the first would not. 

 
Our trusty method of abstraction functions can still do the job here. However, we have to use a 

different sort of auxiliary variable, one that can look into the future just as a history variable looks 
into the past. Just as we did with history variables, we will show that a module 𝑇𝑃 (𝑇 with Prophecy) 
augmented with a prophecy variable has the same traces as the original module 𝑇. Actually, we can 
show that it has the same finite traces, which is enough to take care of safety properties. 

 
History variable Prophecy variable 

1. Every initial state has at least one value for 
the history variable. 

1. Every state has at least one value for the 
prophecy variable. 

2. No existing step is disabled by new guards 
involving a history variable. 

2. No existing step is disabled in the back-
ward direction by new guards involving a 
prophecy variable. More precisely, for each 
step (𝑡, 𝜋, 𝑡′) and state (𝑡′,  𝑝′) there must 
be a p such that there is a step 
((𝑡, 𝑝), 𝜋, (𝑡′, 𝑝′)). 

3. A value assigned to an existing state com-
ponent must not depend on the value of a 
history variable. One important case of this 
is that a return value must not depend on a 
history variable. 

3. Same condition. A prophecy variable can 
affect what actions are enabled, subject to 
condition (2), but it can’t affect how an ac-
tion changes an existing state component. 

 
4. If 𝑡 is an initial state of 𝑇 and (𝑡, 𝑝) is a 

state of 𝑇𝑃, it must be an initial state.  
 
Most people find this hard to grasp. In the unlikely event that you have to deal with a spec that 

makes a premature choice, you should deal with it at the highest possible level, as in the two exam-
ples above. That is, write another spec that does not make a premature choice, and use a prophecy 
variable (or sheer willpower) to show that it implements the first one. Then when you deal with more 
realistic code, you won’t have to worry about prophecy variables. 


