
Specifying Concurrency, lecture 17, 6.826 Fall 2017

Formal Concurrency

Non- atomic semantics

The most general way to describe a concurrent system is as a collection of independent atomic actions

that share a collection of variables. If the actions are A1, ..., An then the entire system is just the ‘or’

of all these actions: A1 [] ... [] An. In general only some of the actions will be enabled, but for each

step the system non-deterministically chooses an action to execute from all the enabled actions. Thus

non-determinism encompasses concurrency. In the language of Lamport’s TLA, each action is a

predicate relating a pre-state and a post-state, and [] is logical “or”.

This story works well for distributed systems, but for local concurrency we find it convenient to carry

over into the concurrent world as much of the framework of sequential computing as possible. Hence

threads for sequential computing. To define its sequence, each thread has a state variable called its

‘program counter’ $pc, and each of its actions has the form (h.$pc = α) => c, (this is Spec for

𝐢𝐟 ℎ. $𝑝𝑐 = 𝛼) 𝐭𝐡𝐞𝐧 𝑐, and [*] is Spec for 𝐞𝐥𝐬𝐞). But threads are not fundamental.

If c is in thread h, its transition function is
(\ s, o | s(h+".$pc") = α /\ o(h+".$pc) = β /\ rel')

Here rel' is rel with each reference to a local variable v changed to h + ".v" or h + ".P.v".
If c is in procedure P, that is, c can execute for any thread whose program counter has reached α, its transition

function is
(\ s, o | (EXISTS h: Thread |

s(h+".P.$pc") = α /\ o(h+".P.$pc) = β /\ rel'))

Example of labels in Spec, and translation to a pile of atomic actions.
 VAR t |

[1] DO i < n => << pc= /\ i < n => pc:= [*] pc:= >>

 [] sum := [] sum + x(i); []<< pc= => t := sum + x(i); pc:= >>

 []<< pc= => sum := t; pc:= >>

 [] i := [] i + 1 []<< pc= => t := i + 1; pc:= >>

 []<< pc= => i := 1; pc:= >>

OD [] []<< pc= => ...

Here is a Spec program that searches for prime numbers. It is more like a spec, using an infinite number

of threads, one for every odd number.

CONST Odds = {i: Nat | i // 2 = 1 /\ i > 1 }

VAR primes : SET Nat := {2}

done : SET Nat := {} % numbers checked

INVARIANT (ALL n: Nat | n IN done /\ IsPrime(n) ==> n IN primes

 /\ n IN primes ==> IsPrime(n))

THREAD Sieve1(n :IN Odds) =

 {i :IN Odds | i <= Sqrt(n)} <= done => % Wait for possible factors
IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) =>

<< primes \/ := {n} >>

[*] SKIP

FI;

<< done \/ := {n} >> % No more transitions

FUNC Sqrt(n: Nat) -> Int = RET { i: Nat | i*i <= n }.max

Handout 17 has a more practical version of this program as well, using just 10 threads.

Specifying Concurrency, lecture 17, 6.826 Fall 2017

Big atomic actions

The idea: [] A; [] B = [] << A; B >> if A denotes an atomic command that commutes with

every atomic command C in the program (other than B) that is enabled at the semicolon. The transition

relation for the program is

h.$pc = α => A [] h.$pc = => B [] C1 [] C2 [] ...

Commutes? Easy cases are disjoint variables (and thread locals are automatically disjoint) or protected

by lock. Any locking scheme (e.g., R/W) will work in which non-commuting operations hold mutually

exclusive locks; this is the basis of rules for ‘lock conflicts’.

Another important case is mutex acquire and release operations. These operations only touch the mutex,

so they commute with everything else. What about these operations on the same mutex in different

threads? If both can execute, they certainly don’t yield the same result in either order; that is, they don’t

commute. When can both operations execute? We have the following cases (writing the executing

thread as an explicit argument of each operation):

 A [] C Possible sequence (C is enabled at)?
m.acq(h) m.acq(h') No: C is blocked by h holding m
m.acq(h) m.rel(h') No: C won’t be reached because h' doesn’t hold m
m.rel(h) m.acq(h') OK
m.rel(h) m.rel(h') No: one thread doesn’t hold m, hence won’t do rel

So m.acq commutes with everything that’s enabled at , since neither mutex operation is enabled at in

a program that avoids havoc. But m.rel(h) doesn’t commute with m.acq(h'). The reason is that the A;

C sequence can happen, but the C; A sequence m.acq(h'); m.rel(h) cannot, because in this case h

doesn’t hold m and therefore can’t be doing a rel. Hence it’s not possible to flip every C in front of

m.rel(h) in order to make A; B atomic. What does this mean? You can acquire more locks and still

keep things atomic, but as soon as you release one, you no longer have atomicity. Hence two-phase

locking.

A third important case of commuting operations, producer-consumer, is like the mutex case. Hence

dataflow.

How do you know that you made the atomic action big enough? There should be an invariant that holds

whenever you are not in an atomic action. That is, commands in the action may invalidate it, but the

action must establish it before ending.

Often there’s an invariant that only holds at a particular PC value. That is, it has the form pc = x →

invariant. It’s convenient to write it at that point in the program text, instead of writing a PC label there.

Proofs

<< A; B >> (2: S)

A; [] B (1: U)

s s

u s

= ~

A

SKIP
s'

s'

=

B

<< A ; B >>

u("$pc") =

Specifying Concurrency, lecture 17, 6.826 Fall 2017

We need a precise definition of “C is enabled at and commutes with A”. For any atomic command X, we write

u X u' if X relates u to u'. The idea of ‘commutes’ is that <<A; C>>, as a relation between states, is a subset of

the relation <<C; A>>. To make this precise all we need is to plug in the meaning of semicolon: C commutes with

A iff

(ALL u1, u2 | (EXISTS u | u1 A u /\ u C u2 /\ u("h.$pc") =)
 ==> (EXISTS u' | u1 C u' /\ u’ A u2))

This says that any result that you could get by doing A; C you could also get by doing C; A. Note that it’s OK for

C; A to have more steps, since we want to show that A; C; B implements C; << A; B >>, not that they are

equivalent. This is not just nit-picking; if C tries to acquire a lock that A holds, there is no step from A to C in the

first case.

We need an abstraction relation AR. We write u ~ s for “AR relates u to s”. u ~ s if
 u("h.$pc") /\ s = u

\/ u("h.$pc") = /\ s A u.

Why is this an abstraction relation? It certainly relates an initial state to an initial state, and it certainly

works for any transition u -> u' that stays away from , that is, in which u("h.$pc") ≠ and

u'("h.$pc") ≠ , since the abstract and concrete states are the same. What about transitions that do

involve ?Then are 3 cases:

h.$pc changes to ; executed A h.$pc starts at ; executed B h.$pc starts at ; executed C

s s'

u'u

= A

A

=
s s'

u'u

A =

B

<<A; B>>
s s'

u' u

A A

C

C
u1

u2

u'

Specifying Concurrency, lecture 17, 6.826 Fall 2017

Examples of concurrency

Mutexes

Here is a spec of a simple Mutex module, which can be used to ensure mutually exclusive execution of

critical sections. The state of a mutex is the thread that holds the mutex, or nil if it’s free.

CLASS Mutex EXPORT acq, rel =
VAR m : (Thread + Null) := nil

% Each mutex is either nil or the thread holding the mutex.

% The variable SELF is defined to be the thread currently making a step.
APROC acq() = << m = nil => m := SELF; RET >>

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

END Mutex

If a thread invokes acq when m ≠ nil, then the body fails. This means that there’s no possible step for

that thread, and the thread is blocked, waiting at this point until the guard becomes true. If many threads

are blocked at this point, then when m is set to nil, one is scheduled first and it sets m to itself

atomically; the other threads are still blocked.

The spec says that if a thread that doesn’t hold m does m.rel, the result is HAVOC. As usual, this means

that the code is free to do anything when this happens. As we shall see in the SpinLock code below, one

possible ‘anything’ is to free the mutex anyway.

Here is a simple use of a mutex m to make the Increment procedure atomic:

PROC Increment() = VAR t: Int |

m.acq; t := Register.Read(); t := t + 1; Register.Write(t); m.rel

This keeps concurrent calls of Increment from interfering with each other. If there are other write

accesses to the register, they must also use the mutex to avoid interfering with threads executing

Increment.

Spin locks

A simple way to code a mutex is to use a spin lock. Here is incorrect code:

CLASS BadSpinLock EXPORT acq, rel =

TYPE FH = ENUM[free, held]

VAR fh := free

PROC acq() =

DO << fh = held => SKIP >> OD; % wait for fh = free

<< fh := held >> % and acquire it
PROC rel() = << fh := free >>

END BadSpinLock

This is wrong because two concurrent invocations of acq could both find fh = free and subsequently

both set fh := held and return. Here is correct code.

PROC acq() = VAR t: FH |

DO << t := fh; fh := held >>; IF t = free => RET [*] SKIP FI OD

PROC rel() = << fh := free >>

Specifying Concurrency, lecture 17, 6.826 Fall 2017

The SpinLock code differs from the Mutex spec in another important way. It “forgets” which thread

owns the mutex. The following ForgetfulMutex module is useful in understanding the SpinLock

code—in ForgetfulMutex, the threads get forgotten, but the atomicity is the same as in Mutex.

CLASS ForgetfulMutex =

PROC acq() = << fh = free => fh := held >>

PROC rel() = << fh := free >>

END ForgetfulMutex

Of course this code is not practical in general unless each thread has its own processor; it is used,

however, in the kernels of most operating systems for computers with several processors.

The strategy for proofs

We need to show that each step of the code simulates a sequence of steps of the spec. An external step

must simulate a sequence that contains exactly one instance of the same external step and no other

external steps; it can also contain any number of internal steps. An internal step must simulate a

sequence that contains only internal steps.

Theorem: If there exists an abstraction function or relation from U to S then U implements S; that is,

every trace of U is a trace of S.

The formal method suggests the following strategy for doing hard concurrency proofs.

1. Start with a spec, which has an abstract state.

2. Choose a concrete state for the code.

3. Choose an abstraction function, perhaps with history variables, or an abstraction relation.

4. Write code, identifying the critical actions that change the abstract state.

5. While (checking the simulation fails) do

Add an invariant, checking that all actions of the code preserve it, or

Change the abstraction function (step 3), the code (step 4), the invariant (step 5), or more than

one, or

Change the spec (step 1).

This approach always works. The first four steps require creativity; step 5 is quite mechanical except

when you find an error. It is somewhat laborious, but experience shows that if you are doing hard

concurrency and you omit any of these steps, your program will have bugs. Be warned.

