
Notes for Lecture 19 
 

Automated and modular refinement reasoning 

Per-procedure simulation, non-interference via invariants. 

Preemptive vs cooperative semantics. 

Linear variables. 

Variable hiding. 

 

The CIVL verifier manipulates multiple operational descriptions of a program, i.e., several lay-

ers of refinement are specified and verified at once. What does this mean? 

 

A simulation relation between a program and its abstraction is inferred from checks on each 

procedure, thus decomposing a whole-program refinement problem into per-procedure verifica-

tion obligations. 

 

For example, the mover type of AcquireLock is right. 
These mover types (Right, Left, Both and Non-mover) are checked by constructing verifica-

tion conditions from each pair of atomic actions. 

A yield sufficiency automaton (Figure 2) encodes all sequences of atomic actions (of Right, 

Left, Both and Non-mover types) and yields for which safety of cooperative semantics is sufficient 

for safety of preemptive semantics. 

 
Each “transaction" starts with a sequence of right movers (or both movers) and ends with a 

sequence of left movers (or both movers). In the middle, it can have at most one non mover. Trans-

actions must be separated by yield statements. 

Commutativity reasoning may be avoided by annotating atomic action specifications with the 

mover type atomic and inserting a statement before every invocation of an atomic action. This 

can make proofs difficult. 

The CIVL type system ensures that values contained in linear variables cannot be duplicated. 

 

Each atomic action has a single-state gate predicate and a two-state transition relation. If a … 

gate predicate does not hold, the program fails. Compare with “fail” in Spec. 

The yield invariant is expected to hold at yield statement (sequential correctness) and be pre-

served by concurrent threads (non-interference). So it’s a global invariant: pc = yield → invariant. 

The CIVL type checker enforces a generalization of the distinctness invariant that the permission 

sets corresponding to the values in available variables across all threads are mutually disjoint. ??? 

 

We can guarantee that Proglo is safe (i.e., all atomic actions will satisfy their gates when run) if 

the following conditions hold: 

1. Proghi is safe when executed with preemptive semantics. 



2. Proglo is a valid refinement of Proghi , according to the rules for refinement in CIVL. Specifi-

cally, for any atomic action A in Proghi implemented by a procedure P in Proglo , any path from entry 

to exit of P must contain exactly one atomic block that implements the action A; all other atomic 

blocks on the path must leave the global and thread-local state unchanged. Furthermore, all calls 

to A in Proghi are replaced by calls to P in Proglo . 

3. The invariants of Proglo satisfy sequential correctness and non-interference with respect to 

cooperative semantics. 

4. Proglo is well-typed with respect to linearity: does not duplicate any linear variables, and 

linear variables passed to procedure calls and atomic actions are available. 

5. The atomic actions in Proglo satisfy the pairwise commutativity checks. 

6. The yield statements in Proglo are sufficient, according to the yield sufficiency automaton in 

Figure 2. 

7. Any infinite execution of Proglo must visit a yield statement infinitely often. 

By themselves, conditions 1-4 guarantee that Proglo will be safe when executed with coopera-

tive semantics. Conditions 5-7 then additionally ensure that Proglo will be safe when executed with 

preemptive semantics. 

 

A key challenge for modular verification in CIVL is the checking of non-interference and com-

mutativity. Each module M owns a set of global variables, each owned by exactly one module. 

Only M's procedures and actions can access M's global variables. Invariants can access anything. 

Note that ownership can change across refinement layers. 

 

To perform this check, the CIVL verifier introduces the following fresh local variables in P: (1) 

a Boolean variable b initialized to false to track whether an atomic block along the current execu-

tion has modified a global or thread-local variable, (2) variables to capture snapshot of global and 

thread-local variables at the beginning of each atomic block. By updating these auxiliary variables 

appropriately, the refinement check is reduced to a collection of assertions introduced into the 

body of P at the end of atomic blocks and at the exit of P. ??? 

 

All the annotations, except those at yields, loops, and procedure boundaries, are automatically 

generated using the technique of verification conditions [5]. 

In initialization and root scanning, the mutator threads temporarily donate a fraction of their 

linear permissions to the GC thread. 

The specification states that Allocate atomically adds new objects to the heap, while 

ReadField and WriteField read and write heap object fields. Although the GC's Mark and Sweep 

code constitutes most of the GC code, they are hidden in the high-level specification. 

CIVL supports large proof steps, in each of which the bodies of several procedures are automat-

ically replaced by atomic actions, thereby lowering the cost of both interaction and automation. 

To verify a concurrent, shared-memory program using such tools as TLA+, one must encode 

the program semantics as a state-transition system and express verification goals in terms of this 

system. For concurrent, shared-memory software, CIVL enables reasoning on the structured, im-

perative multithreaded program text rather than a logic description of the program's state-transition 

relation. 



Main points 

Note that the programs being verified are small—17 to 539 loc. But GC is 2100 lines. 

 

This isn’t C, it’s a “a core concurrent programming language”. CIVL is designed for verifica-

tion. What’s the gap? It’s a conservative extension of the Boogie [4] language: new language 

primitives for linear variables, asynchronous and parallel procedure calls, yields, atomic actions 

as procedure specifications, expressing refinement layers, and hiding of global variables and pro-

cedures. 

 

Compare 𝑃𝑟𝑜𝑔 = (𝑝𝑠;  𝑎𝑠;  𝐺; �⃗� ) (procs, atomics, Global vars, Threads) with the state in non-

atomic Spec. 𝑇 = (𝑇𝐿; 𝐹 );  𝐹 =  (𝑃;  𝐿;  𝑠). 𝑇 is Thread, 𝑃 is Procedure, 𝐹 is Frame, 𝐿 is for Local. 

“Refinement” here is replacing atomic actions with procs, perhaps several at once, thus making 

atomicity more fine-grained. It’s a partial function RS from procedures to atomic actions; Proghi 

is obtained from Proglo. We prove safe Proghi → safe Proglo. 

 

Pieces of the proof: 

•  “refinement” = simulation proofs—some sequential code simulates one step of spec. One 

step of code does the step of spec, the others are nops. Includes variable hiding. 

• “location invariants”, non-interference checked pairwise—each invariant vs. each extant 

atomic action (plus established by running thread). Note: these can refer to variables in 

other threads. 

• “atomic specs” with mover types for procedures (which are the only atomic brackets in 

CIVL). This avoids the need for the labels we had in Spec. 

• “linear types” to rule out aliasing—“values contained in linear variables cannot be dupli-

cated”. Used for thread-private variables, separation of memory, permissions. What is this 

in logic? 

• “mover types” to make bigger steps (“transactions”: RB* N LB*) between yields atomic 

without specific reasoning (cooperative vs. preemptive semantics). Commutativity is 

also checked pairwise—each procedure vs. each atomic action. Logic is only on coopera-

tive program. 

• “yield sufficiency automaton”, a specialized simulation proof. 

• Modularity—per-procedure reasoning for correctness, per-module reasoning for interfer-

ence—modules “own” variables. 

 

I didn’t understand the bit about atomic blocks. 

 

Explain about “rely-guarantee” reasoning. This might be Abadi and Lamport’s composition. 

Note the varying levels of formality—the Henzinger paper has a very different flavor. 

 

Types vs logic?? 

 

Rely-guarantee 

R,G ⊦ {P} C {Q} 



 

IF:  

(1) the initial state satisfies P, and  

(2) every state change by another thread is in R,  

THEN:  

(1) every final state satisfies Q, and  

(2) every state change by C is in G 

Abadi-Lamport 

Consider a system  that is the composition of systems 1, ... , n. We must prove that  

guarantees a property M under an environment assumption E, assuming that each i satisfies 

a property Mi under an environment assumption Ei. 

Observe that: 

 

(1) We expect  to guarantee M only because of the properties guaranteed by its components. 

Therefore, we must be able to infer that i guarantees M from the assumption that each i guar-

antees Mi. 

(2) The component i guarantees Mi only under the assumption that its environment satisfies 

Ei; and i’s environment consists of ’s environment together with all the other components j. 

We must therefore be able to infer Ei from the environment assumption E and the component 

guarantees Mj.  

 

These observations lead to the following principle. 

Composition Principle: Let  be the composition of 1, ... , n, and let the following condi-

tions hold. 

(1)  guarantees M if each component i guarantees Mi. 

(2) The environment assumption Ei of each component i is satisfied if the environment of  

satisfies E and every j satisfies Mj. 

(3) Every component i guarantees Mi under environment assumption Ei.  

Then  guarantees M under environment assumption E. 

Types for Atomicity: Static Checking and Inference for Java 

Flanagan, Freund, Lifshin, and Qadeer 

 

Expressing our atomicity analysis as a type system in this way offers several 

key benefits. Type checking is modular and more scalable to large programs 

than model-checking or whole-program analyses. Atomicity specifications also 

serve as useful and verifiable documentation of a program’s synchronization 

requirements. Moreover, the type system can be extended to uniformly handle 

additional locking idioms, such as locks protecting other locks, as we illustrate 

below. 

 

Tech report MSR-TR-2015-8, reference 23: https://www.microsoft.com/en-us/research/publi-

cation/automated-and-modular-refinement-reasoning-for-concurrent-programs/  

https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/

