
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated and modular refinement reasoning
for concurrent programs

Chris Hawblitzel1, Erez Petrank2, Shaz Qadeer1, and Serdar Tasiran3

1 Microsoft
2 Technion

3 Koç University

Abstract. We present civl, a language and verifier for concurrent pro-
grams based on automated and modular refinement reasoning. civl sup-
ports reasoning about a concurrent program at many levels of abstrac-
tion. Atomic actions in a high-level description are refined to fine-grain
and optimized lower-level implementations. A novel combination of au-
tomata theoretic and logic-based checks is used to verify refinement.
Modular specifications and proof annotations, such as location invariants
and procedure pre- and post-conditions, are specified separately, indepen-
dently at each level in terms of the variables visible at that level. We have
implemented civl as an extension to the boogie language and verifier.
We have used civl to refine a realistic concurrent garbage collection algo-
rithm from a simple high-level specification down to a highly-concurrent
implementation described in terms of individual memory accesses.

1 Introduction

We present a technique for verifying a refinement relation between two concur-
rent, shared-memory multithreaded programs. Our work is inspired by stepwise
refinement [43], where a high-level description is systematically refined, poten-
tially via several intermediate descriptions, down to a detailed implementation.
Refinement checking is a classical problem in verification and has been investi-
gated in many contexts, including hardware verification [11] and verification of
cache-coherence protocols and distributed algorithms [32]. In the realm of se-
quential software, notable successes using the refinement approach include the
work of Abrial et al. [2] and the proof of full functional correctness of the seL4 mi-
crokernel [30]. This paper presents the first general and automated proof system
for refinement verification of shared-memory multithreaded software.

We present our verification approach in the context of civl, an idealized
concurrent programming language. In civl, a program is described as a col-
lection of procedures whose implementation can use the standard features such
as assignment, conditionals, loops, procedure calls, and thread creation. Each
procedure accesses shared global variables only through invocations of atomic
actions. A subset of the atomic actions may be refined by new procedures and a
new program is obtained by replacing the invocation of an atomic action by a call
to the corresponding procedure refining the action. Several layers of refinement

may be performed until all atomic actions in the final program are directly im-
plementable primitives. Unlike classical program verifiers based on Floyd-Hoare
reasoning [20, 28] that manipulate a program and annotations, the civl verifier
manipulates multiple operational descriptions of a program, i.e., several layers
of refinement are specified and verified at once.

To prove refinement in civl, a simulation relation between a program and
its abstraction is inferred from checks on each procedure, thus decomposing a
whole-program refinement problem into per-procedure verification obligations.
The computation inside each such procedure is partitioned into “steps” such that
one step behaves like the atomic specification and all other steps have no effect
on the visible state. This partitioning follows the syntactic structure of the code
in a way similar in spirit to Floyd-Hoare reasoning. To express the per-procedure
verification obligations in terms of a collection of per-step verification tasks, the
civl verifier needs to address two issues. First, the notion of a “step” in the code
implementing a procedure must be defined. The definition of a step can deeply
affect the number of checks that need to be performed and the number of user
annotations. Second, it is typically not possible to show the correctness of a step
from an arbitrary state. A precondition for the step in terms of shared variables
must be supplied by the programmer and mechanically checked by the verifier.

To address the first problem, civl lets the programmer define the granularity
of a step, allowing the user to specify a semantics with larger atomic actions. A
cooperative semantics for the program is explicitly introduced by the programmer
through the use of a new primitive yield statement; in this semantics a thread
can be scheduled out only when it is about to execute a yield statement. The
preemptive semantics of the program is sequentially consistent execution; all
threads are imagined to execute on a single processor and preemption, which
causes a thread to be scheduled out and a nondeterministically chosen thread
to be scheduled in, may occur before any instruction.4 Given a program P ,
civl verifies that the safety of the cooperative semantics of P implies the safety
of the preemptive semantics of P . This verification is done by computing an
automata-theoretic simulation check [24] on an abstraction of P in which each
atomic action of P is represented by only its mover type [35, 17]. The mover
types themselves are verified separately and automatically using an automated
theorem prover [9].

To address the second problem that refinement verification for each step re-
quires invariants about the program execution, civl allows the programmer to
specify location invariants, attached either to a yield statement or to a proce-
dure as its pre- or post-condition. Each location invariant must be correct for all
executions and must continue to hold in spite of potential interference from con-
currently executing threads. We build upon classical work [38, 29] on reasoning
about non-interference with two distinct innovations. First, we do not require the
annotations to be strong enough to prove program correctness but only strong
enough to provide the context for refinement checking. Program correctness is

4 In this paper, we focus our attention on sequential consistency and leave considera-
tion of weak memory models to future work.

established via a sequence of refinement layers from an abstract program that
cannot fail. Second, to establish a postcondition of a procedure, we do not need
to propagate a precondition through all the yield annotations in the procedure
body. The correctness of an atomic action specification gives us a simple frame
rule—the precondition only needs to be propagated across the atomic action
specification. civl further simplifies the manual annotations required for logical
non-interference checking by providing a linear type system [42] that enables
logical encoding of thread identifiers, permissions [7], and disjoint memory [31].

Finally, civl provides a simple module system. Modules can be verified sep-
arately, in parallel or at different times, since the module system soundly does
away with checks that pertain to cross-module interactions. This feature is signif-
icant since commutativity checks and non-interference checks for location invari-
ants are quadratic, whole program checks involving all pairs of yield locations
and atomic blocks, or all pairs of actions from a program. Using the module
system, the number of checks is reduced; they become quadratic in the number
of yields and atomic blocks within each module rather than the entire program.

We have implemented civl as a conservative extension of the boogie verifier.
We have used it to verify a collection of microbenchmarks and benchmarks from
the literature [6, 13–15, 19, 27]. The most challenging case study with civl was
carried out concurrently with civl’s development and served as a design driver.
We verified a concurrent garbage collector, through six layers of refinement,
down to atomic actions corresponding to individual memory accesses. The level
of granularity of the lowest-level implementation distinguishes this verification
effort, detailed in a technical report [23], from previous attempts in the literature.

In conclusion, civl is the first automated verifier for shared-memory mul-
tithreaded programs that provides the capability to establish a multi-layered
refinement proof. This novel capability is enabled by two important innovations
in core verification techniques for reducing the complexity of invariants supplied
by the programmer and the verification conditions solved by the prover.

– Reasoning about preemptive semantics is replaced by simpler reasoning
about cooperative operational semantics by exploiting automata-theoretic
simulation checking. This is a novel technique that combines automata-based
and logic-based reasoning.

– A linear type system establishes invariants about disjointness of permission
sets associated with values contained in program variables. These invariants,
communicated to the prover as free assumptions, significantly reduce the
overhead of program annotations. We are not aware of any other verifier
that combines type-based and logic-based reasoning in this style.

2 Overview

We present an overview of our approach to refinement on an example (Figure 1)
inspired by the write barrier in our concurrent garbage collector (GC). In a
concurrent GC, each object in the heap has a color: UNALLOC, WHITE, GRAY,
or BLACK. The GC traverses reachable objects, marking the reached objects

GRAY and then BLACK. At the end of the traversal, reached objects are BLACK,
unreached objects are WHITE, and the GC deallocates the WHITE objects. The
threads in the system must cooperate with the GC to ensure that the collection
creates no dangling pointers (i.e., if object A is reachable and A points to object

var Color: int; // UNALLOC=0, WHITE=1,
// GRAY=2, BLACK=3

procedure WB(linear tid:Tid)
atomic [if (Color == WHITE) Color := GRAY];
requires Color >= WHITE;
ensures Color >= GRAY;
{

var cNoLock:int;
yield Color >= WHITE;
cNoLock := GetColorNoLock(tid);
yield Color >= cNoLock;
if (cNoLock <= WHITE)

call WBSlow(tid);
yield Color >= GRAY;

}

procedure WBSlow(linear tid:Tid)
atomic [if (Color <= WHITE) Color := GRAY];
{

var cLock:int;
call AcquireLock(tid);
cLock := GetColorLocked(tid);
if (cLock <= WHITE)

call SetColorLocked(tid, GRAY);
call ReleaseLock(tid);

}

procedure GetColorNoLock(linear tid:Tid)
returns (cl:int) atomic [...];

procedure AcquireLock(linear tid:Tid)
right [...];

procedure ReleaseLock(linear tid:Tid)
left [...];

procedure GetColorLocked(linear tid:Tid)
returns (cl:int) both [...];

procedure SetColorLocked(linear tid:Tid,
cl: int) atomic [...];

Fig. 1: Write barrier

B, then B should not be deallocated).
Therefore, before a mutator thread mu-
tates an object A to point to an object
B, the thread executes a write barrier to
check the color of B. If B is WHITE, the
write barrier darkens B’s color to GRAY

to ensure that the GC does not deallo-
cate B. WB implements the write barrier.
The write barrier is only invoked on al-
located objects, thus, colors cannot be
UNALLOC when WB is called. To simplify
exposition, we consider a single object
whose color is stored in the shared vari-
able Color. WB first reads Color with-
out holding a lock, to avoid when possi-
ble, the cost of acquiring and releasing
a lock for each object encountered by
a mutator. If Color <= WHITE, WB calls
the more expensive procedure WBSlow to
re-examine and possibly update Color

while holding the lock. The annotation
yield Color >= cNoLock is a local in-
variant expected to be preserved by the
environment of WB. civl simplifies rea-
soning about WBSlow by allowing us to
express its specification as the following
atomic action:
[if (Color <= WHITE) Color := GRAY]

This specification indicates that regard-
less of how the environment interferes with its execution, to its caller it appears
as if WBSlow atomically executes the code above.

Per-procedure simulation, non-interference via invariants. The ver-
ification of WB illustrates a combination of techniques. We first explain how WB’s
post-condition is verified. To see that this task is not trivial, consider a scenario
in which WB, not holding a lock, reads Color and sets cNoLock to GRAY and
then yields. Another thread sets Color to WHITE. WB resumes, but because the
local variable cNoLock is GRAY, does nothing and exits with Color being WHITE,
violating WB’s postcondition. But, in the GC this scenario is not possible. The
yield predicate (location invariant) Color >= cNoLock expresses the fact that
other threads can only modify Color to a higher (darker) value. civl verifies the
correctness of this location invariant and rules out this undesirable scenario. Us-

ing this location invariant, WB’s pre-condition, and WBSlow’s atomic specification,
civl is able to verify WB’s post-condition.

In Figure 1, we suppose for illustration’s sake that WB and WBSlow have
slightly different atomic specifications, one testing for Color == WHITE and the
other for Color <= WHITE. In this case, verifying that the implementation of WB
refines its atomic specification relies on Color not being UNALLOC. Otherwise,
WBSlow would set Color to GRAY whereas WB would leave it unmodified, leading
to a refinement violation. WB’s precondition Color >= WHITE and the location
invariant Color >= cNoLock imply that Color is never UNALLOC during the ex-
ecution of WB. Given this constraint, civl checks atomicity refinement for WB

by verifying the existence of a particular simulation-relation. Each control path
through WB is analyzed as a sequence of code fragments, from one yield state-
ment to the next. For each control path through a procedure, exactly one code
fragment must be simulated by the atomic action specification while others do
not modify global state. This refinement proof for WB makes use of (1) correct
modeling of environment interference by the pre- and post-conditions, and the
yield predicate, and (2) the atomic action specification for the called procedure
WBSlow. The civl verifier automatically computes a logical verification condition
capturing the proof obligations from the body and specification of WB.

Just as the verification of WB builds on the specification of WBSlow, the verifi-
cation of WBSlow builds on other refinement proofs (not shown) of the procedures
called in WBSlow; these procedures are shown at the bottom of the figure. This
example shows only one procedure at this layer. In programs with many proce-
dures with atomic specifications at each layer, civl combines the per-procedure
refinement proofs soundly into a whole-program refinement proof.

Preemptive vs cooperative semantics. The verification of WBSlow high-
lights another important feature in civl. Refinement checking is performed on
cooperative semantics in which a yield-to-yield execution fragment of code is
executed atomically. However, in a real execution, control can switch between
threads at any point in the code. A naive modeling of a real execution would
put a yield statement before every instruction in the code. The absence of a
yield statement before every instruction is justified by reasoning about mover
types [17]. The procedures called in WBSlow have the mover types claimed in their
declarations and verified by civl. For example, the mover type of AcquireLock
is right which indicates that it commutes later in time against concurrently
executing environment actions. These mover types are checked by constructing
verification conditions from each pair of atomic actions.

RM LMB,R

N,

Y B,LL

Fig. 2: Yield sufficiency automaton

Given verified mover types for ac-
tions, civl verifies the correctness of
the placement of yield statements us-
ing a novel approach. A yield suffi-
ciency automaton (Figure 2) encodes
all sequences of atomic actions (of
Right, Left, Both and Non-mover

types) and yields for which safety of cooperative semantics is sufficient for

safety of preemptive semantics. Each “transaction” starts with a sequence of
right movers (or both movers) and ends with a sequence of left movers (or both
movers). In the middle, it can have at most one non mover. Transactions must
be separated by yield statements. civl then interprets the control-flow graph
of each procedure as an automaton with mover types as edge labels. This ab-
straction for WBSlow is shown in Figure 3. civl verifies that this automaton
is simulated by the yield sufficiency automaton using an existing algorithm for
computing simulation relations [24].

The use of commutativity reasoning is optional in civl, but beneficial in our
experience. Commutativity reasoning may be avoided by annotating atomic ac-
tion specifications with the mover type atomic and inserting a yield

Y R B L Y
 N

Fig. 3: Abstraction of WBSlow

statement before every invocation of
an atomic action. In our experience
with civl, using more yield state-
ments, each with an accompanying lo-
cation invariant, can make proofs dif-
ficult in two ways. First, the annota-
tion burden goes up because sophis-

ticated ghost variables may need to be introduced in the program semantics.5

Second, the computational cost of the pairwise mover reasoning is replaced by
the cost of pairwise non-interference checks between yield predicates and con-
currently executing atomic actions.

Linear variables. In Figure 1, thread identifier (tid) variables are declared
linear to indicate that two threads cannot possess the same thread identi-
fier simultaneously. We now explain this feature of civl in more detail using

type Tid;
procedure Allocate()

returns (linear tid:Tid);

var a:[Tid]int;

procedure main()
{

while (true) {
var linear tid:Tid := Allocate();
async call P(tid);
yield true;

}
}
procedure P(linear tid: Tid)

ensures a[tid] == old(a)[tid] + 1;
{

var t:int := a[tid];
yield t == a[tid];
a[tid] := t + 1;

}

Fig. 4: Encoding thread identifiers

the program in Figure 4. This exam-
ple contains a shared global array a

indexed by an uninterpreted type Tid

representing the set of thread identi-
fiers. A collection of threads are exe-
cuting procedure P concurrently. The
identifier of the thread executing P

is passed in as the parameter tid.
A thread with identifier tid owns
a[tid] and can increment it without
danger of interference. The yield pred-
icate t == a[tid] in P indicates this
expectation, yet it is not possible to
prove it unless the reasoning engine
knows that the value of tid in one
thread is distinct from its value in a
different thread.

5 Location invariants that cannot refer to the state of other threads are known to be
incomplete, both in theory and in practice.

Instead of building a notion of thread identifiers into civl, we provide a more
primitive and general notion of linear variables. The civl type system ensures
that values contained in linear variables cannot be duplicated [42]. Consequently,
the parameter tid of distinct concurrent calls to P are known to be distinct;
the civl verifier exploits this invariant while checking for non-interference and
commutativity. Linearity is general enough to support much more than just fixed
thread identifiers: civl also uses it to express separation of memory (as is done
commonly in separation logic proofs [39]; see [31]) and to express permissions [7]
that may be transferred but not duplicated between threads. Our verified GC,
for example, expresses mutual exclusion during initialization and root scanning
by temporarily transferring permissions from mutator threads to the GC thread.

Variable hiding. The atomic action specification of WBSlow makes no ref-
erence to the lock variable, although its implementation involves a lock. When
verifying refinement for WBSlow, the lock variable has been hidden. civl allows
the programmer to both introduce and hide variables in each refinement step,
thereby providing the capability to perform data refinement. The ability to in-
troduce and hide variables and write yield predicates specific to each refinement
step facilitates proofs spanning a large range of abstraction.

3 Verification

In this section, we present our verification method on a core concurrent pro-
gramming language called civl (Figure 5). Due to lack of space, we can only
provide an overview of the design of the civl verifier. The full formalization of
the language and detailed rules for all verification judgments is available in a
technical report [23].

s ∈ Stmt ::= skip | yield e | call A |
call P | async P |
ablock {e} s | s; s |
if le then s else s |
while {e} le do s

F ∈ Frame ::= (P,L, s)

T ∈ Thread ::= (TL,
−→
F)

Prog ∈ Program ::= (ps, as, G,
−→
T)

Fig. 5: Syntax

A civl program Prog contains
procedures ps, atomic actions as,

global state G, and threads
−→
T . Each

thread T in
−→
T contains thread-local

state TL and stack frames
−→
F . Each

stack frame F in
−→
F contains a pro-

cedure name P , procedure-local state
L, and a statement s representing the
code in P that remains to be exe-
cuted. Thus, Prog contains all infor-

mation to represent not only the static program written by the programmer
but also the entire state of the program as it executes. The statements in civl
contain the usual constructs such as sequencing, conditional control flow, and
looping. In addition, it contains invocation of procedures (call P), execution
of atomic actions (call A), and thread creation (async P). Each atomic action
has a single-state gate predicate and a two-state transition relation. If a thread
executes an atomic action in a state (disjoint union of global, thread-local, and
procedure-local state) where its gate predicate does not hold, the program fails;
otherwise, the state is modified according to its transition relation. The execution

of Prog is modeled as the usual preemptive semantics in which a nondetermin-
istically chosen thread may execute any number of steps. Prog is unsafe if some
execution fails the gate of an atomic action; otherwise, Prog is safe.

Suppose a program Proghi has been proved to be safe. However, it is imple-
mented using atomic actions that are too coarse to be directly implementable.
To carry over the safety of Proghi to a realizable implementation Prog lo , these
coarse atomic actions must be refined down to lower-level actions. During re-
finement, a high-level atomic action A is implemented by a procedure P , which
is itself implemented using lower-level atomic actions. In civl, the programmer
can simultaneously refine many atomic actions by specifying a partial function
RS from procedures to atomic actions; Proghi is obtained from Prog lo by re-
placing each occurrence of call P for P ∈ dom(RS) with call RS (P). The main
contribution of this paper is a verification method that allows us to validate
such a refinement from Proghi to Prog lo (or abstraction from Prog lo to Proghi)
so that safety of Proghi implies the safety of Prog lo as well.

While abstracting Prog lo to Proghi , it is often inconvenient to reason about
Prog lo using its preemptive semantics, which allows potential interference at ev-
ery control location in a thread from concurrently-executing threads. To make
reasoning more convenient, civl provides the statement yield e, an annotation
used to specify a cooperative semantics for the program. In this semantics, a
thread executes continuously until it reaches a yield statement, at which point
a different thread may be scheduled. To ensure that any reasoning performed
on cooperative semantics is also sound for preemptive semantics, civl exploits
commutativity reasoning. It allows the programmer to specify the commutativ-
ity type of atomic actions in the program—B for both mover, R for right mover,
L for left mover, and N for non mover [17]. The civl verifier checks the cor-
rectness of these commutativity types by verifying each atomic action pairwise
against every atomic action in the program. While it is sound to put a yield
statement before and after every atomic action, the programmer may omit cer-
tain yield statements, e.g., a yield after a right mover or a yield before a left
mover. In general, the Yield Sufficiency Automaton from Figure 2 encodes all
sequences of atomic actions and yield statements for which reasoning about co-
operative semantics is sound. Given the commutativity types of atomic actions
and the program code annotated with yield statements, the civl verifier checks
modularly for each procedure that its implementation is connected to the yield
sufficiency automaton via a simulation relation [24].

In addition to introducing a control location where interference is allowed
to occur, a yield statement yield e also provides an invariant e to constrain the
environment interference. The invariant e is similar to the location invariant
in the method of Owicki and Gries [38]. It is expected to hold when the exe-
cuting thread reaches the yield statement (sequential correctness) and also be
preserved by concurrently-executing threads (non-interference). Each procedure
is equipped with a precondition, a postcondition, and a set of (potentially) mod-
ified thread-local variables. civl uses these procedure annotations to verify the
sequential correctness of location invariants for each procedure separately. To

verify non-interference, it would suffice to check that each location invariant is
preserved by each atomic action in the program. civl increases the precision of
this check by allowing each location invariant to be preserved across an atomic
block, introduced as the statement ablock {e} s. The invariant e annotating the
atomic block is expected to hold when this statement begins execution and is
verified as part of sequential correctness. The civl type checker checks that the
statement s inside this atomic block does not have any yield statement or other
atomic blocks inside it. Thus, non-interference of a location invariant e′ against
ablock {e} s is achieved by proving the Floyd-Hoare triple {e ∧ e′}s{e′}.

Having verified sequential correctness and non-interference for location in-
variants, it remains to verify refinement, i.e., if RS (P) = A, then the atomic
action A is correctly refined by the procedure P . This requirement means that
any path from entry to exit of P must contain exactly one atomic block that
implements the action A; all other atomic blocks on the path must leave global
and thread-local variables unchanged. To perform this check, the civl verifier
introduces the following fresh local variables in P : (1) a Boolean variable b ini-
tialized to false to track whether an atomic block along the current execution
has modified a global or thread-local variable, (2) variables to capture snapshot
of global and thread-local variables at the beginning of each atomic block. By
updating these auxiliary variables appropriately, the refinement check is reduced
to a collection of assertions introduced into the body of P at the end of atomic
blocks and at the exit of P .

Often, commutativity and non-interference checks require knowledge about
distinctness of local program variables in different threads. For example, in Fig-
ure 1, to prove that AcquireLock commutes to the right of ReleaseLock, the
verifier must know that the input parameter tid to these atomic actions is dif-
ferent if they are being executed by different threads. A similar situation arises
in Figure 4, when attempting to prove that the location invariant t == a[tid]

is preserved by the atomic action a[tid] := t + 1. Information about distinct-
ness of program variables in different threads is difficult to provide as a location
invariant whose scope is local to the context of the unique executing thread.
As an alternative, we exploit reasoning based on a linear type system [42]. The
programmer declares certain variables as linear at input and output interfaces of
procedures and actions. Using this interface information, the civl type system
computes a set of available linear variables at each control location in a proce-
dure. The availability of a variable may change at an assignment or a procedure
call, e.g., if y is available just before x := y, then y is not available and x is
available just afterwards. The civl type checker guarantees that the values con-
tained in available linear variables, across all threads at their respective control
locations, are distinct from each other. This fact is introduced as a logical as-
sumption by the verifier when performing commutativity and non-interference
checks.

The interaction between the linear type system and logical reasoning in civl
is more general than the description above. In civl, the programmer may specify
an arbitrary function Perm from a value to a set of values; the set Perm(v) is

the set of permissions associated with v. The example described in the previous
paragraph corresponds to the special case when Perm(v) = {v}. The civl type
checker enforces a generalization of the distinctness invariant that the permission
sets corresponding to the values in available variables across all threads are
mutually disjoint.

3.1 Safety guarantee

We can combine the verification techniques described above to verify the safety
of a program Prog lo . Specifically, we can guarantee that Prog lo is safe (i.e., all
atomic actions will satisfy their gates when run) if the following conditions hold:

1. Proghi is safe when executed with preemptive semantics.
2. Prog lo is a valid refinement of Proghi , according to the rules for refinement

in civl. Specifically, for any atomic action A in Proghi implemented by
a procedure P in Prog lo , any path from entry to exit of P must contain
exactly one atomic block that implements the action A; all other atomic
blocks on the path must leave the global and thread-local state unchanged.
Furthermore, all calls to A in Proghi are replaced by calls to P in Prog lo .

3. The invariants of Prog lo satisfy sequential correctness and non-interference
with respect to cooperative semantics.

4. Prog lo is well-typed with respect to linearity. Specifically, Prog lo does not try
to duplicate any linear variables, and linear variables passed to procedures
calls and atomic actions are available as expected by the type checker.

5. The atomic actions in Prog lo satisfy the pairwise commutativity checks.
6. The yield statements in Prog lo are sufficient, according to the yield suffi-

ciency automaton in Figure 2.
7. Any infinite execution of Prog lo must visit a yield statement infinitely often.

By themselves, conditions 1-4 guarantee that Prog lo will be safe when exe-
cuted with cooperative semantics. Conditions 5-7 then additionally ensure that
Prog lo will be safe when executed with preemptive semantics. The technical re-
port [23], which includes formal definitions of all the conditions for an extension
of the language in Figure 5, formalizes this safety guarantee into a soundness
theorem by establishing a simulation relation between Prog lo and Proghi . Since
the theorem connects the safety of one program’s preemptive semantics to an-
other program’s preemptive semantics, multiple applications of the theorem can
be chained together to establish the safety of a low-level program: the lowest
level Prog0 is safe because Prog1 is safe, Prog1 is safe because Prog2 is safe, and
so on.

4 Modules

The technical report[23] describes a simple module system built on civl that
allows separate verification of modules, allowing programmers to check a large

program by breaking it into smaller pieces and checking the pieces indepen-
dently. A key challenge for modular verification in civl is the checking of non-
interference and commutativity. Naively, these are whole-program judgments,
quadratically checking all pairs of actions or all pairs of yields and atomic blocks
from an entire program. To check these judgments on a per-module basis rather
for a whole program, we observe that commutativity and non-interference are
trivially satisfied for operations that act on disjoint sets of global variables. If
an atomic block modifies only variables g1 and g2, it will not interfere with a
location invariant that refers only to variables g3 and g4. More generally, let
each module M own a set of global variables, such that each global variable is
owned by exactly one module, and decree that only M ’s procedures and actions
can access M ’s global variables. Statements in M ’s procedures can only read
and write M ’s own global variables, and M ’s actions and location invariants can
only refer to M ’s own global variables. (On the other hand, procedure assertions
that are not checked for non-interference, such as the e in ablock {e} s, may
mention global variables from other modules, since these assertions can neither
interfere with other modules’ location invariants nor be interfered with by other
modules’ statements.)

Note that ownership can change across refinement layers. For example, a
library module implementing locks may define a variable to represent the ab-
stract state of a lock; after the lock module is verified at a low layer, another
module can take ownership of the lock variable in a higher layer (see [23] for a
detailed example of ownership transfer across three layers, from a lock module
to a datatype module to a client module).

5 Implementation

We have implemented the method described in this section as a conservative
extension of the Boogie [4] language and verifier. Our implementation provides
new language primitives for linear variables, asynchronous and parallel proce-
dure calls, yields, atomic actions as procedure specifications, expressing refine-
ment layers, and hiding of global variables and procedures. At its core, Boo-
gie is an unstructured language comprising code blocks and goto statements.
Our implementation handles the complexity of unstructured control flow. To
simplify the exposition, our formalization uses Floyd-Hoare triples to present
sequential correctness and annotated atomic code blocks to present refinement
and non-interference checks. However, our implementation is considerably more
automated. All the annotations, except those at yields, loops, and procedure
boundaries, are automatically generated using the technique of verification con-
ditions [5]. Annotated atomic code blocks are also inferred automatically. Non-
interference checks are collected as inlined procedures invoked at appropriate
places within the code of a procedure for increased precision.

We automated the simulation relation check used for yield sufficiency in
Section 3 by adapting an algorithm by Henzinger et al.[24] for computing the
similarity relation of labeled graphs. The complexity of the algorithm is O(n∗m),

where n and m are the number of control-flow graph nodes and edges. In practice,
this part of the verification is fast.

A large proof usually comprises multiple layers of refinement chained to-
gether. Our implementation allows the specification of multiple views of a pro-
gram in a single file by using the mechanism of layers. The programmer may
attach a positive layer number to each annotation and procedure; version i of
the program is constructed from annotations labeled i and procedures labeled
at least i. We have implemented a type checker to make sure that layer numbers
are used appropriately, e.g., it is illegal for a procedure with layer i to call a
procedure with layer j greater than i.

6 Experience

The civl verifier has been under development for around two years. Over that
period, we have developed a collection of 32 benchmarks, ranging in size from
17 to 539 LOC, to illustrate various features of civl and for regression testing
as we evolved the verifier. In addition to microbenchmarks, this collection also
includes standard benchmarks from the literature such as a multiset implemen-
tation [14], the ticket algorithm [15], Treiber stack [27], work-stealing queue [6],
device cache [13], and lock-protected increment [19]. The civl verifier is fast;
the entire benchmark set verifies in 20 seconds on a standard 4-core Windows
PC (2.8GHz, 8GB) with no benchmark requiring more than a few seconds.

6.1 Garbage collector

We have used civl to design and verify a realistic concurrent mark-sweep garbage
collection (GC) algorithm (available at [22]). In particular, although our algo-
rithm is based on an earlier algorithm by Dijkstra et al [10], it extends the
earlier algorithm with various modern optimizations and embellishments to im-
prove generality and performance. These extensions include lower write barrier
overhead, phase-based synchronization and handshaking, and coordination be-
tween the GC and mutator threads during root scanning; our use of linearity
aids the proof of root scanning, while our rely-guarantee encoding aids man-
agement of colors inside the write barrier (which is similar to the barrier in
Section 2). Furthermore, our encoding of the algorithm in civl spans a wide
range of abstraction, from low-level memory operations all the way up to high-
level specifications; we used six layers of refinement to help hide low-level details
from the high-level portions of the verification.

We believe that civl’s combination of features makes practical, for the first
time, verification across such a wide range of abstraction:

– The GC’s lowest layers relied primarily on reduction to prove that operations
on concurrent data structures and synchronization operations appear atomic
to higher layers.

– The GC’s higher layers relied primarily on invariant-based non-interference
reasoning. This reasoning was simplified because reduction already made
lower-layer operations atomic, reducing the amount of interference between
higher-layer operations. In addition, the use of location invariants made cer-
tain layers of the proof more manageable compared to an earlier effort ver-
ifying the same GC where we used rely-guarantee reasoning and auxiliary
variables to reason about non-interference.

– Linear variables were used throughout the proof to model the distinct thread
identifiers for the garbage collector thread and mutator threads, but were
most instrumental in expressing mutual exclusion during initialization and
during root scanning. In initialization and root scanning, the mutator threads
temporarily donate a fraction of their linear permissions to the GC thread.
The distinctness invariant from Section 3 guarantees that the mutator threads
and GC threads cannot simultaneously possess the same linear permissions;
we leverage this guarantee to prove non-interference of mutator and GC
actions during initialization and root scanning.

civl’s support for refinement also enabled concise specifications of the GC’s
correctness: a correct GC must implement Allocate, ReadField, and WriteField
actions that appear to act atomically, even though the implementations of these
operations actually execute concurrently with the GC thread and with other
program threads. The specification states that Allocate atomically adds new
objects to the heap, while ReadField and WriteField read and write heap object
fields. Although the GC’s Mark and Sweep code constitutes most of the GC code,
they are hidden in the high-level specification; they have detailed correctness
specifications in the middle layers of the proof, but the most important point
at the high level is that their work not interfere with Allocate, ReadField, and
WriteField. In particular, Mark must coordinate with WriteField’s write barrier,
and Sweep must not remove objects reachable by ReadField and WriteField.

Overall, our GC implementation consists of about 2100 lines of Boogie code.
The verification takes 60 seconds on the same PC used for microbenchmarks.
The bulk of this time, 54 seconds, is taken by the verification of sequential
correctness and non-interference. The checks for linear variables, yield sufficiency,
and commutativity take the rest of the time and are insignificant in comparison.

7 Related work

Our work is the first to provide a tool and theory to support automated, modu-
lar whole-program refinement through multiple layers, as distinct from existing
work on single-layer atomicity refinement between procedure implementations
and specifications. civl combines a number of techniques in a novel manner to
decompose the refinement task following the syntactic structure of a program.
Below, we first contrast civl with refinement verification techniques, and then
with tools and techniques for reasoning about concurrent programs in general.

7.1 Refinement-oriented verification

Atomic action specifications have been explored by the calvin [18, 21] verifier.
civl carries out refinement verification on a procedure body with cooperative
semantics as enabled by movers types and reduction. calvin attempts to ver-
ify refinement directly on the preemptive semantics, making only limited use of
movers at the lowest-level representation. calvin, unlike civl, does not support
location invariants and linear variables but incorporates rely-guarantee reason-
ing. civl supports both location invariants or rely-guarantee reasoning, and ei-
ther technique can be used to prove non-interference. However, in certain cases,
rely-guarantee reasoning requires use of auxiliary (shared) variables and makes
interactive proofs difficult as was the case in our GC proof.

qed [13] is a simplifier for concurrent programs and is close in spirit to the
refinement-oriented approach of civl. A key distinction between civl and qed
is the fact that a proof step in qed is a small rewrite in the concurrent program
that must be justified by potentially expensive reduction and invariant reasoning.
In qed, procedures can be proven atomic only one procedure at a time, and only
by transforming their bodies by reduction to be yield free. The number of small
proof steps directly affect both programmer and computer effort. By contrast,
civl supports large proof steps, in each of which the bodies of several procedures
are automatically replaced by atomic actions, thereby lowering the cost of both
interaction and automation. The non-interference reasoning in qed is even more
limited than calvin. qed supports only global invariants and does not support
rely-guarantee reasoning or linear variables.

Liang et al. [34] present a method for verifying that procedure bodies refine
atomic specifications The key verification approach is rely-guarantee reasoning
and the refinement (simulation) relation between a procedure and its specifica-
tion is constrained so it is preserved under parallel composition. No tool support
is provided. Authors present a (paper) GC proof, which is limited in scope com-
pared to ours, as their proof corresponds to a few layers of our proof. In particu-
lar, the GC is not refined down to individual atomic memory accesses. Since this
work uses different languages to describe the high-level and low-level programs, it
is not immediately possible to carry out a multi-level stepwise refinement proof.

Turon and Wand [40] use ownership disciplines and separation logic to verify
refinement of atomic specifications by concurrent data structure implementa-
tions. Rely-guarantee reasoning is supported to provide compositionality and
non-interference arguments. This work targets a single refinement step between
atomic specifications for methods and their implementations. No tool support
for this verification method is provided.

Verifying linearizability of concurrent data structures (see, e.g., [12, 25]) can
be viewed as an instance of one-level of refinement in our setting. civl can
be used for mechanical verification of linearizability, as we did for the Treiber
stack. Tools and techniques specific to verifying linearizability cannot be easily
generalized for stepwise refinement proofs through multiple levels.

Refinement proofs between implementations and specifications of protocols
have been investigated using the TLA+ [32] specification language. Composi-

tional refinement proofs [1] have also been investigated in this context. Modu-
lar refinement proofs for hardware systems have been investigated extensively
(e.g., [26, 11]) using the SMV [36] and Mocha [3] model checking tools. To verify
a concurrent, shared-memory program using such tools, one must encode the
program semantics as a state-transition system and express verification goals
in terms of this system. For concurrent, shared-memory software, civl enables
reasoning on the structured, imperative multithreaded program text rather than
a logic description of the program’s state-transition relation.

7.2 Reasoning about concurrency

In this section, we discuss foundational techniques for combating the complexity
of concurrent program verification. civl and refinement techniques discussed in
the previous section have common ideas with tools and formalisms discussed in
this section, however, the latter primarily target verification of a single program
rather than refinement. Refinement in civl is orthogonal to these techniques,
which can be aided by civl’s ability to connect a complex concurrent program
to a simpler abstraction.

VCC [8] is a tool for verifying concurrent C programs. Chalice [33] is a lan-
guage and modular verification tool for concurrent programs. VCC does not
support refinement and Chalice does so only for sequential programs. VCC and
Chalice base their invariant reasoning on objects, object ownership, and type
invariants. Invariant reasoning in civl is more primitive and based on predi-
cates in yield statements. Although the approach in VCC and Chalice is more
convenient when applicable, civl’s approach is more flexible. VCC and Chal-
ice can reason sequentially about objects exclusively owned by a thread; civl
accomplishes the same using linear variables. Neither VCC nor Chalice support
movers and reduction reasoning.

Concurrent separation logic [37] reasons about concurrency without explic-
itly checking for non-interference between threads. Recently, tools based on this
logic that blend in explicit non-interference reasoning (but without support for
reduction and mover reasoning) have been developed [16, 41]. civl’s combina-
tion of interference checking and linear variables is an extreme example of this
trend, is very general and technique-agnostic. We supply very primitive abstrac-
tions and let programmers mix and match these abstractions freely to encode
the non-interference reasoning style of their choice.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang.
Syst., 15(1):73–132, Jan. 1993.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT, 12(6):447–
466, 2010.

3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. MOCHA: modularity in model checking. In Computer Aided Veri-
fication, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June
28 - July 2, 1998, Proceedings, pages 521–525, 1998.

4. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO, pages 364–387,
2005.

5. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In PASTE, 2005.

6. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720–748, Sept. 1999.

7. J. Boyland. Checking interference with fractional permissions. In Static Analysis:
10th International Symposium, 2003.

8. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs, 2009.

9. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

10. E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Commun. ACM, 21(11),
Nov. 1978.

11. A. T. Eiŕıksson. The formal design of 1M-gate ASICs. Form. Methods Syst. Des.,
16(1):7–22, Jan. 2000.

12. T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying lineariz-
ability proofs with reduction and abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 6015 of Lecture Notes in Computer
Science, pages 296–311. Springer Berlin Heidelberg, 2010.

13. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, pages
2–15, 2009.

14. T. Elmas, S. Tasiran, and S. Qadeer. VYRD: verifying concurrent programs by
runtime refinement-violation detection. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation, Chicago, IL,
USA, June 12-15, 2005, pages 27–37, 2005.

15. A. Farzan, Z. Kincaid, and A. Podelski. Proofs that count. In The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 151–164, 2014.

16. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In ESOP, 2007.

17. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static
checking and inference for java. ACM Trans. Program. Lang. Syst., 30(4), 2008.

18. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

19. C. Flanagan and S. Qadeer. Thread-modular model checking. In Model Check-
ing Software, 10th International SPIN Workshop. Portland, OR, USA, May 9-10,
2003, Proceedings, pages 213–224, 2003.

20. R. Floyd. Assigning meaning to programs. In Symposia in Applied Mathematics,
volume 19, pages 19–32. American Mathematical Society, 1967.

21. S. N. Freund and S. Qadeer. Checking concise specifications for multithreaded
software. Journal of Object Technology, 3(6):81–101, 2004.

22. C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran. Verified concurrent
garbage collector. http://singularity.codeplex.com/SourceControl/latest#

base/Imported/Bartok/runtime/verified/GCs/concur/GC.bpl.
23. C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran. Automated and modular

refinement reasoning for concurrent programs. Technical Report MSR-TR-2015-
8, Microsoft Research, 2015. http://research.microsoft.com/apps/pubs/?id=

238907.
24. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on

finite and infinite graphs. In FOCS, 1995.
25. T. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs. In

CONCUR 2013—Concurrency Theory, volume 8052 of Lecture Notes in Computer
Science, pages 242–256. Springer Berlin Heidelberg, 2013.

26. T. A. Henzinger, X. Liu, S. Qadeer, and S. K. Rajamani. Formal specification and
verification of a dataflow processor array. In Proc. 1999 IEEE/ACM Intl. Conf.
on Computer-aided Design, ICCAD ’99, pages 494–499. IEEE Press, 1999.

27. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

28. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

29. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM TOPLAS, 5(4):596–619, 1983.

30. G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and
G. Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems, 32(1):2:1–2:70, feb 2014.

31. S. K. Lahiri, S. Qadeer, and D. Walker. Linear maps. In PLPV, pages 3–14, 2011.
32. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Professional, 2004.
33. K. R. Leino and P. Müller. A basis for verifying multi-threaded programs. In

ESOP, pages 378–393, 2009.
34. H. Liang, X. Feng, and M. Fu. Rely-guarantee-based simulation for compositional

verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst., 36(1):3:1–3:55, Mar. 2014.

35. R. J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

36. K. L. McMillan. A methodology for hardware verification using compositional
model checking. Sci. Comput. Program., 37(1-3):279–309, 2000.

37. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

38. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i.
Acta Inf., 6:319–340, 1976.

39. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

40. A. J. Turon and M. Wand. A separation logic for refining concurrent objects. In
Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 247–258, New York, NY, USA, 2011. ACM.

41. V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.
In CONCUR, 2007.

42. P. Wadler. Linear types can change the world! In Programming Concepts and
Methods. North, 1990.

43. N. Wirth. Program development by stepwise refinement. Commun. ACM,
14(4):221–227, Apr. 1971.

