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Abstract
Systems depend critically on the behaviour of file systems,
but that behaviour differs in many details, both between
implementations and between each implementation and the
POSIX (and other) prose specifications. Building robust and
portable software requires understanding these details and
differences, but there is currently no good way to system-
atically describe, investigate, or test file system behaviour
across this complex multi-platform interface.

In this paper we show how to characterise the envelope
of allowed behaviour of file systems in a form that enables
practical and highly discriminating testing. We give a math-
ematically rigorous model of file system behaviour, SibylFS,
that specifies the range of allowed behaviours of a file sys-
tem for any sequence of the system calls within our scope,
and that can be used as a test oracle to decide whether an ob-
served trace is allowed by the model, both for validating the
model and for testing file systems against it. SibylFS is mod-
ular enough to not only describe POSIX, but also specific
Linux, OS X and FreeBSD behaviours. We complement the
model with an extensive test suite of over 21 000 tests; this
can be run on a target file system and checked in less than
5 minutes, making it usable in practice. Finally, we report
experimental results for around 40 configurations of many
file systems, identifying many differences and some serious
flaws.
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1. Introduction

Problem File systems, in common with several other key
systems components, have some well-known but challeng-
ing properties:

• they provide behaviourally complex abstractions;
• there are many important file system implementations,

each with its own internal complexities;
• different file systems, while broadly similar, nevertheless

behave quite differently in some cases; and
• other system software and applications often must be

written to be portable between file systems, and file sys-
tems themselves are sometimes ported from one OS to
another, or written to support application portability.

File system behaviour, and especially these variations in be-
haviour, thus must be understood by those developing file
systems, by those aiming to write robust and secure soft-
ware above them, and by those porting file systems or ap-
plications. But at present there is no good way to system-
atically describe, investigate, or test that behaviour: either
to describe what the envelope of allowed behaviour of a file
system (or group of file systems) is, to investigate experi-
mentally what behaviour occurs, or to test whether file sys-
tem implementations conform to some particular envelope.

Normal practice has for decades relied on prose standards
and documentation (the POSIX standard [33], Linux Stan-
dard Base (LSB) [21], man pages) and on test suites [22, 34].
Indeed, this is so well established that many practitioners
would not imagine that any alternative can exist. But nor-
mal practice does not support any of the above: prose docu-
ments generally cannot be made complete and unambiguous;
they cannot be used as a test oracle to automatically deter-
mine whether some observed behaviour is allowed or not;
and building test suites without a test oracle requires manual
curation of the intended outcome of each test. As we shall
see from our test results, behavioural differences between
file systems have proliferated, some intentional and many
clearly bugs.
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Contributions In this paper we show how to characterise
the envelope of allowed behaviour of file systems and to
use that for practical and highly discriminating testing. Our
first contribution is a rigorous specification of file system be-
haviour, SibylFS: a model that specifies the range of allowed
behaviours of a file system for any sequence of API calls.
This model has several important and unusual properties:

1. It is executable as a test oracle: given an observed trace
of API calls and returns, SibylFS can efficiently compute
whether it is allowed by the model or not. In conjunc-
tion with our extensive test suite (see below), this lets us
validate the model, to ensure it does not overly constrain
implementation behaviour, and lets us test implementa-
tions, to ensure they do not exhibit behaviour not allowed
by the model.

2. To characterise the behaviour of a particular imple-
mentation, SibylFS is parameterised in various ways. It
currently supports four primary modes: POSIX, Linux,
OS X and FreeBSD behaviour. This variation is essen-
tial when exploring file system behaviour, as otherwise a
single difference (e.g. in path resolution) might give rise
to thousands of individual test-result discrepancies; we
have to be able to analyse and factor out such differences
to make progress.

3. Within our scope, SibylFS aims to be realistic and com-
prehensive: it is a model of actual file system behaviour,
not of idealised or simplified file systems, and it gives
a functional-correctness criterion for arbitrary sequences
of API calls.

4. To make it completely precise and unambiguous, while
still admitting the loose specification needed, the model
is written in a mathematically rigorous language, the
typed higher-order logic of the Lem tool [28]. We use
Lem to translate this into the theorem provers HOL4 and
Isabelle/HOL (which we have used to prove theorems
about file system behaviour), and into the OCaml source
code used by SibylFS.

5. We take care also to make the model readable, for use
as an informal reference. The Lem language is in many
ways similar to a conventional functional programming
language; the model has a modular structure that isolates
the conceptually distinct aspects of file system behaviour,
and the model is expressed over abstract structures rather
than the performance-oriented details of file system im-
plementations. Key choices are linked to the experimen-
tal trace data that they relate to. All this is important also
for maintainability, which has been essential in develop-
ing the model over the last two years.

6. Finally, SibylFS is fast enough to run and easy enough to
set up to make it easily usable in practice. Pre-compiled
binaries are available on Linux and OS X (and compile-
from-source is additionally supported on these platforms
and FreeBSD), and a test-and-check run for a single

file system takes less than 5 minutes (§7.1). We envi-
sion SibylFS being used during file system development,
quality assurance, and continuous integration.

Our second contribution is an extensive test suite, con-
sisting of 21 070 automatically generated and hand-written
test scripts. The fact that we have an executable test oracle
greatly simplifies test suite development: we do not have to
manually determine the intended outcome for each test, but
rather can focus on generating tests with good coverage. Our
present test suite achieves 98% coverage of the model (§7.2).

Our third contribution is the results of this testing and
modelling process. We have run our test suite on over 40
system configurations, to simultaneously develop the model
and to identify bugs, platform conventions, and deviations.
We present an overview of some of the most interesting find-
ings, including deviations of Linux HFS+ from OS X HFS+,
the effect of mount options on SSHFS/tmpfs’s behaviour, a
storage leak in posixovl/VFAT, and an infinite busy loop on
OpenZFS for OS X (§7.3).

Technical challenges There are two main challenges we
have had to overcome. The first is nondeterminism (§3): file
system implementations have considerable internal nonde-
terminism and our model must be loose enough to accom-
modate that, but the model must still be clear (not com-
plicated with implementation detail), and, crucially, trace-
checking must be efficient. Previous related work modelling
and checking TCP [3] required a sophisticated higher-order
logic constraint-based backtracking search, and checking
around 1000 traces took 2500 CPU-hours; here, by carefully
isolating nondeterminism we check 20 000 traces in about a
minute on a four-core machine. These tasks are not directly
comparable, but the specifications and traces have similar
sizes and characters; this per-trace performance difference
(around 6 orders of magnitude) makes the difference be-
tween something on the edge of practicality and something
that can be done routinely during development.

The second main challenge is that of managing com-
plexity, in constructing an accurate, readable and concise
model that synthesises the many existing sources of infor-
mation and our thousands of observed real-world traces of
behaviour (§4). The sheer variety of behaviours and num-
ber of test results is potentially overwhelming; the challenge
was to distil all this complexity down into a concise, struc-
tured, comprehensible document (rather than a collection of
thousands of special cases). When we started the work, it
was not obvious that this was feasible, but a range of model-
structuring choices and our analysis tools have made it so.

Use cases SibylFS provides a turnkey black-box test setup
that can be used routinely (with low effort for the user)
to identify behavioural differences between file system im-
plementations and between those and our specifications. It
should be useful for:
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• file system authors, kernel maintainers, and distribution
teams, to identify POSIX violations (§7.3.2) and platform
convention violations (§7.3.3);

• those porting file systems (e.g. OpenZFS to Linux, OS X,
and FreeBSD; HFS+ to Linux; or ext2 to OS X), to ensure
that their efforts strike the right balance between expected
behaviour and platform convention (§7.3.3); and

• system administrators who, before deploying a file sys-
tem to users, want to understand their deployment con-
figuration. (§7.3.4)

The specification also serves as a precise reference docu-
ment, both for file system developers and application au-
thors, to understand what behaviour can be relied on and
where file systems differ.

It also supports machine-checked and machine-assisted
formal proofs about the specification. As a demonstration
that this is feasible, for a previous version of the model
we have proved two sanity properties: that libc calls that
result in an error do not change the abstract file system state
(for POSIX, Linux and OS X), and that (in the absence of
resource-limit failures) whether a libc call succeeds or fails
is deterministic.

SibylFS also opens up many possibilities for future work,
as we touch on in §9. Our model, tools, and results are avail-
able under the BSD-style ISC licence at http://sibylfs.
io/.

1.1 Scope
POSIX describes many aspects of operating systems, but
our model covers only the part that is relevant to file sys-
tems. We include close, closedir, link, lseek, lstat,
mkdir, open, opendir, pread, pwrite, read, readdir,
readlink, rename, rewinddir, rmdir, stat, symlink,
truncate, unlink, and write. This covers the essential
commands that are necessary to manipulate and interrogate
the directory structure and file contents, and the functions
dealing with symlinks (readlink, symlink). Together this
is sufficient to cover a broad range of uses.

Our model also includes a model of processes and the
operating system, again focusing on those aspects that are
relevant to file systems. Processes can be created and de-
stroyed. Each process has a working directory which is
mainly used when resolving relative paths. For this reason
we include chdir. Additional per-process structures that we
model include the file-descriptor table and the process run
state. We also model permissions, including chmod, chown,
and umask, and a model of users, groups, and which users
belong to which groups.

POSIX includes notions of undefined, unspecified and
implementation-defined behaviour. Undefined behaviour re-
sults from using a libc function with arguments that are
“invalid” according to POSIX. Unspecified behaviour re-
sults from a libc function call with arguments that are valid,
but for which POSIX leaves the behaviour unspecified.

Implementation-defined behaviour is similar to unspecified
behaviour, but it is expected that conforming implementa-
tions document their behaviour in such cases. Our model for
the POSIX platform covers all these cases. The variants of
our model for real-world platforms describe the actual real-
world behaviour, even where POSIX declares the behaviour
to be undefined.

1.2 Limitations
Currently we do not model host crash-failure. We model
concurrent file system API calls (the call occurs before the
return, and there is an intermediate point in time where
the effect of the call occurs), and our checking infrastruc-
ture supports them. Our test harness executes against the
libc interface, and as a result it is not possible to force libc
calls from different processes to execute in-kernel simulta-
neously, see §6.3. As a consequence, our test suite does not
contain tests involving in-kernel racy behaviours; system-
atically testing such interactions would require significant
additional effort to extend the test executor, but the model
and the checker should be largely unchanged. However, our
test harness and test suite do cover interleaved calls from
multiple processes, which is important when modelling and
testing permissions. We also model timestamps, but periodic
timestamp updating results in extremely non-deterministic
behaviour, which currently makes trace checking take ex-
cessive runtime, so this is largely untested at present. These
are all important aspects of file system behaviour, and we be-
lieve our approach can be extended to cover them in the fu-
ture, but each would require substantial additional work; we
exclude them for the time being simply to keep the project
manageable.

We do not model unusual file types (such as FIFO spe-
cial files), or asynchronous I/O, signals and the associated
EINTR error. We exclude errors such as EIO (“a physical I/O
error has occurred”) and ENOMEM; from a modelling perspec-
tive such errors could potentially occur at any time. We do
not model many resource exhaustion behaviours, such as ex-
ceeding the maximum number of entries in a directory or
using all available inodes. We do not currently model the
*at forms of functions such as openat, although it should
be straightforward to adapt our model to include them.

We do not model free space or storage media behaviour
in general. One can imagine future work developing, for a
particular file system of interest, an executable abstraction
function that reads a concrete volume state (perhaps after a
host crash and recovery) and calculates the corresponding
abstract state of the model. Testing the correspondence be-
tween implementation and model at each step, analogously
to [30], would likely be extremely discriminating.

Our model parameterisation (Point 2 of the first contribu-
tion above), while desirable and necessary, also has a cost:
running SibylFS is low-cost, but adapting SibylFS to model
a file system with significantly different behaviour can in-
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SibylFS

Test scripts Test executor Traces

Checked traces

Test generator Handwritten test scripts

Figure 1. File system testing and trace checking

volve substantial work (though with a big pay-off: charac-
terising that behaviour in detail).

2. Overview
The process of testing a file system and checking the result-
ing traces with SibylFS is depicted in Fig. 1. The process
starts with a set of test scripts, organised into groups accord-
ing to the libc functions they target. The bulk of these are
generated automatically by the test generator, supplemented
by hand-written test scripts.

Test scripts contain sequences of file system commands
that are used by the test executor to drive the real-world file
system under test, via the libc interface. An example excerpt
from a test script is given in Fig. 2; after the header, each
line is the data for a single libc call (more complex test
scripts can involve multiple processes). Each script sets up
whatever file system state it needs, starting from an empty
file system; they involve up to several hundred libc function
calls. The resulting behaviour is recorded in a trace file, as
in Fig. 3, interleaving the commands from the script with the
responses received from the real-world system.

These trace files are processed by SibylFS to check for
conformance with the model. The main part of the SibylFS
checker is the model itself, automatically translated from
Lem to OCaml and then linked together with a small OCaml
wrapper. Checking is done with respect to a particular vari-
ant of the model (POSIX, Linux, OS X or FreeBSD); in addi-
tion, various flags control further checking parameters, such
as whether the initial process runs with root privileges or
not. The output from this checking phase is a set of checked
traces, as in Fig. 4. For steps in the trace that conform to the
model, the checked trace resembles the original. For steps
that are non-conformant, the checked trace includes an er-
ror message and (if possible) diagnostic information to help
identify why the behaviour is non-conformant. In Fig. 4 the
error message indicates that at line 6 in the trace file the real-
world file system returned EPERM, but the specification al-
lowed only EEXIST or ENOTEMPTY.

Individual trace files may contain multiple test calls, and
so it is important that the checker try to continue even when
an individual step fails. In Fig. 4 SibylFS continues checking
the trace under the assumption that EEXIST or ENOTEMPTY
was returned rather than EPERM.

Analysis of the results also requires automation to assist
with the volume of data, as each run produces tens of thou-

@type script

# Test rename___rename_emptydir___nonemptydir

mkdir "emptydir" 0o777

mkdir "nonemptydir" 0o777

open "nonemptydir/f" [O_CREAT;O_WRONLY] 0o666

rename "emptydir" "nonemptydir"

Figure 2. Excerpt of a rename test script

@type trace

# Test rename___rename_emptydir___nonemptydir

3: mkdir "emptydir" 0o777

RV_none

. . . [further calls and return values]
6: rename "emptydir" "nonemptydir"

EPERM

Figure 3. Excerpt of a rename trace; RV none indicates the
call completed successfully.

# Error: 6: EPERM

# unexpected results: EPERM

# allowed are only: EEXIST, ENOTEMPTY

# continuing with EEXIST, ENOTEMPTY

Figure 4. Excerpt of a checked rename trace from
SSHFS/tmpfs 2.5 on Linux 3.19.1

sands of checked traces per platform, and the results must be
compared between file systems and (during model develop-
ment) between model versions. For example, it is common
to compare different file systems (or different versions of the
same file system) on a single operating system; we have also
compared versions of a single file system on several different
operating systems, see §7.3. Checked traces can be rendered
to HTML, along with autogenerated indexes and summaries
of check results. To analyse the results of multiple runs, the
system can intelligently combine the results across many dif-
ferent platforms, merging behaviours common to many runs
and highlighting the differences.

In addition, a model-debugging tool allows model devel-
opers to analyse the checking process itself, taking a trace
and producing a description of the real-world states that were
being tracked by SibylFS at every step of trace. This has
been extremely useful for developing the model, but we do
not expect end users of SibylFS to need it.

The process of constructing the model has been inti-
mately entwined with testing: testing (particularly on new
operating systems and file systems) uncovers new real-world
behaviours, which are then incorporated into the model; new
tests are added and the updated model is then used for an-
other round of testing, with those behaviours now not gener-
ating discrepancies. This represents a virtuous circle: at each
stage the model becomes more accurate and comprehensive,
and the test suite accumulates more and more tests.
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3. Technical challenge: nondeterminism
In writing a model to be used as a test oracle (i.e., to compute
whether observed traces are allowed by the model or not),
the treatment of nondeterminism is a key issue. If both the
model and the implementations are entirely deterministic, at
the abstraction level at which they are being observed, then
one could just run the two on the same input and check they
have equal output. But for real-world software that is rarely
the case: implementation behaviour typically varies, both be-
tween implementations and depending on implementation-
internal runtime choices, and specifications are often delib-
erately loose. For example, for file systems:

• Some API calls could give rise to several distinct errors,
e.g. EISDIR, EEXIST or ENOTEMPTY for a rename of a
file to a non-empty directory; which is actually returned
is determined by the order of the checks in the file system
implementation code.

• The number of bytes returned by a read may be less than
the number requested, determined by the implementation
internal state.

• The order in which readdir returns entries from a direc-
tory with multiple entries will depend on the implemen-
tation and on details of the storage layout of the direc-
tory data (neither of which belong in an abstract specifi-
cation).

• The behaviour of concurrent API calls may be deter-
mined by scheduling.

A sound specification must be loose enough to accommodate
all such variation (looseness should not be confused with
the question of whether a specification is precise: we want
a mathematically precise model, but one that admits a range
of allowable behaviours). But then checking a trace against
such a specification poses an algorithmic problem, espe-
cially when there is internal nondeterminism that is not im-
mediately observable: in general one must effectively track
the set of all possible implementation states (abstracted to
what can affect external observation) at every step of the
trace, or, equivalently, calculate the set of constraints on the
specification state that arise from a trace of observations. The
Netsem project of Bishop et al. [3] produced a specification
and trace-checker in that form for TCP/IP and the Sockets
API, but it required a sophisticated higher-order logic con-
straint solver and a backtracking search process, and as noted
in §1, checking could take thousands of CPU-hours, at the
limits of practicality.

At the same time, there is a tension between writing
a model to be as clear as possible and one that supports
efficient checking (both quite different from writing a file
system implementation, of course); as far as possible we
want to avoid polluting the model with algorithmic concerns.

Accordingly, for SibylFS we took great care up-front to
write the model in a way that would remain clear and be effi-
ciently checkable, without needing a backtracking search or

sophisticated constraint solving. We used different strategies
for different sources of nondeterminism, as follows.

Simple nondeterminism via possible next-state enumera-
tion At the top level the model consists of a type of abstract
file system states and a function that, given such a state and
an API event (call, return, etc.), returns a finite set of possible
next states. We go into more detail in §5. For the simple case
of multiple possible API error return values, the model ex-
plicitly calculates the set of all allowed errors (using novel
combinators, as described in §4, to do so concisely) and a
next state for each, then when the real-system return value is
observed we simply choose the corresponding state.

We use a similar approach to deal with the number of
bytes processed by a read or write, just enumerating the
possible immediate next states. This is attractively simple
and suffices for our testing. It does involve some unnecessary
cost for tests with large reads or writes, enumerating many
next-states, but that blowup is resolved at the next step in
the trace, when the actual number of bytes read by the real-
world process becomes known. To test with very large reads
and writes one could refactor the model slightly to produce
continuations abstracted on the API return values, to check
them and calculate a single next state. The downside of doing
that uniformly is that it makes it hard for the checker to
describe, for a failing step, the set of values that would have
been allowed (as we showed in the example trace of the
previous section).

Directory listing nondeterminism by hand-crafted spec-
ification The readdir command is more challenging to
specify. A process can request a directory handle using
opendir and then use readdir to return the directory en-
tries. These can be returned in any order, so this command
gives rise to significant nondeterminism. However, the real
challenge in specifying this command is to deal with mod-
ifications of the directory (either by the same process or a
different process) while the directory handle is open. If the
directory is not modified at any point, then readdir returns
all the entries in the directory, and each entry is returned
exactly once. The POSIX intent is to provide a similar guar-
antee when the directory is modified, and real-world file sys-
tems also provide this guarantee, as far as we can observe:
for any entry, if that entry is not modified from the time the
directory handle is opened, then that entry will be returned
by readdir exactly once. If an entry is deleted, and if it
has not already been returned by readdir, then it may be
returned by subsequent calls to readdir (if it has already
been returned, then it is not returned again if it is deleted).
Similarly, if an entry is added, then it may be returned by
subsequent calls.

So far, the semantics could be modelled by taking a snap-
shot of the entries when opendir is called, and recording
which entries have already been returned by readdir. On
subsequent calls to readdir, the entries in the directory at
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that point could be examined, and the possible entries that
could be returned at that point could be determined. The
problematic case arises for entries that are initially in the di-
rectory, then deleted, then added again (or, vice versa, those
that are added then deleted). According to POSIX, these en-
tries may (but need not) be returned. In order to model this
behaviour, we are forced to track all changes to a directory
from the point that opendir is called, as well as the entries
that have already been returned by readdir. With this in-
formation, it is possible to determine the set of entries that
must be returned, and those that may be returned, and thus
to give a semantics to the whole command.

In fact, we maintain (rather than compute) sets of “must”
and “may” entries in a directory. Whenever a directory han-
dle is read from, it accesses the changes since the last time
it was read from, and updates the must and may sets, be-
fore nondeterministically splitting to allow any of the entries
in “must” or “may” to be read. This nondeterminism is re-
solved at the next step, when the label reveals the entry ac-
tually read.

It is worth noting that this is an area where a good spec-
ification is conceptually more complex than any particular
implementation: the latter just returns some list of names,
while the model has to capture all allowable sequences, rul-
ing out all those that are not possible.

Concurrency nondeterminism via state sets Multiple user
processes executing file system API calls concurrently also
results in nondeterministic behaviour, e.g. if one process
renames a file while another removes it. The SibylFS model
and trace checker cope with multiple, concurrent API calls
by maintaining explicit sets of possible (model) file system
states.

We note also that another way to avoid internal nonde-
terminism is to instrument the implementation, to expose all
the internal choices that affect external behaviour as trace
events. For a single implementation that might be viable (and
indeed desirable, as it would permit checking of internal in-
variants). But for checking many file systems, the black-box
approach that we follow here is more tractable.

4. Technical challenge: managing complexity
To give an idea of the challenges in identifying and describ-
ing complex real-world behaviours, we describe the process
of updating the model to support OS X. At that point, we
already had variants for POSIX and Linux. We ran the tests
on OS X with the default HFS+ file system, and checked
the traces against the POSIX variant of the model. We were
confronted with thousands of failing traces (around 5 000 for
open alone).

We manually analysed the failing OS X traces to identify
why they were not allowed according to our understanding
of POSIX. This was painstaking work, taking roughly four
to six weeks (though still small compared with the effort re-
quired to implement a production file system). The next step

File system (path-resolved API)Path resolution

State (directory and file contents)

POSIX API file system and process behaviour

Figure 5. Modular structure of the model

was to rework the model to incorporate these new OS X be-
haviours, while remaining concise, structured, and readable.
The process is one of inferring, from thousands of observed
behaviours, a compact description of those behaviours (as a
higher-order logic specification).

To make it feasible to write the model and to extend it in
this way, we have found it essential to structure the model
in various ways. Different mechanisms have been useful to
address different kinds of complexity.

Modules Lem provides a notion of module: a collection
of type, pure function, and inductive relation definitions
(analogous to the modules of OCaml and other ML-like
languages). We used these to structure the model as a set
of independent modules, with clearly defined interfaces, as
shown in Fig. 5. A file system has to maintain the directory
structure and the contents of files, typically using references.
This is managed by the state module. The path resolution
module defines how paths reference particular files and di-
rectories. The file system module represents the bulk of the
model. It describes how each command (link, rename etc.)
behaves, including how they modify the state, and the many
possible error cases, but working over fully resolved paths.
Finally, the POSIX API module glues those together and in-
cludes the behaviour of libc and the operating system, in-
troducing the notion of a process, and per-process datastruc-
tures. This is the top-level module which exposes the inter-
face used for trace checking.

Our module structure does not represent the structure of
the existing POSIX specification or the internal structure of
any file system implementation; rather, it is the result of
an attempt to identify the conceptually key components and
their interfaces, while simultaneously minimising the overall
complexity of the model.

An important decision was to separate path resolution
from the semantics of each command. When processing a
command such as rename p1 p2, the POSIX API module
first resolves the paths p1 and p2 to obtain two resolved
paths. These are then used when invoking the file system
module equivalent of the rename function. Thus, internally
to the model, the file system module API is expressed in
terms of resolved paths, not raw strings. This means that
the file system model is clean, and unpolluted by the tricky
details of path resolution which have been confined in a
separate module.
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let fsop rename checks . . . = . . .
if (fsop rename same rsrc rdst env rsrc rdst s0) then
fsm do nothing

else
( fsop rename checks rsrc rdst env rsrc rdst
||| fsop rename checks root env rsrc
||| fsop rename checks subdir env rsrc rdst
||| fsop rename checks parentdirs env rsrc rdst
||| fsop rename checks perms env rsrc rdst )

Figure 6. Structuring the model using combinators

Because they have pure value-passing interfaces, modules
can be considered in isolation, allowing important invariants
to be established. Modularization also allows unit testing of
individual modules, which has been useful particularly to get
the details of path resolution correct.

Traits Aspects of the model that cut across the modular
structure but which are conceptually distinct have been iso-
lated using a trait-like mechanism: there is a core model on
top of which the user can “mix in” further traits for particu-
lar functionality. The permissions trait defines the behaviour
of file permissions including functions such as umask. The
timestamps trait defines how the timestamp information on
files is updated, in both immediate mode and periodic mode.
For example, “core without permissions” specifies a model
where permission information is ignored, and all files are ac-
cessible by all users.

Monads and combinators Higher-order logic is based on
the notion of (pure) functions. On top of this we have in-
troduced various functional programming structuring tech-
niques, including monads and associated combinators, to al-
low us to structure our definitions.

In Fig. 6 we illustrate the use of the “parallel” com-
binator ||| to specify the checks that the rename func-
tion must perform. The conditional first checks whether
the source and destination are the same, in which case
the rename is a no-op, and the checks do nothing. Oth-
erwise the rename function needs to check various con-
ditions: fsop rename rsrc rdst checks various combinations
of the source and destination that result in errors (for
example, ENOENT may be raised if the source is miss-
ing); fsop rename checks root checks attempts to rename
the root directory; fsop rename checks subdir checks at-
tempts to rename a directory to a subdirectory of itself;
fsop rename checks parentdirs checks that the parent of the
source and destination directory can be found (this check
should always succeed; it is included to cover the case that
a disconnected file or directory is involved in the rename);
fsop rename checks perms checks the permissions involved
in the rename.

Each of these checks may raise many different errors.
Moreover, as discussed in §3, and unlike an implementation,

Main modules
State 502
Path resolution 291
File system 1388
POSIX API 818

Others
Prelude 156
Types 888
Monads 130
Permissions 208
Formal properties 1103
Support files 497

Total 5981

Figure 7. The model, non-comment lines of specification

we have to loosely specify the behaviour: any error that
arises from any of the checks is valid behaviour. The parallel
combinator conceptually allows these checks to be carried
out in parallel, and the resulting error may be from any of
the individual checks. The excerpt in Fig. 6 concisely and
readably expresses all the checks involved, and the use of
the parallel combinator emphasizes that none of the errors
arising from the individual checks has priority over any of
the others. We would strongly argue that the precision and
clarity of our model makes it a useful complement to the
existing POSIX standard.

5. The model
Our model is about 6 000 lines of higher-order logic. In
Fig. 7 we give details of the line count for each part of the
model. We cannot hope to give full details in the space avail-
able. Instead, we give the main types involved, and represen-
tative excerpts from the model. We start by discussing the
notion of a labelled transition system: a mathematical way
to specify complex real-world systems. We then discuss the
main modules that make up our model, following Fig. 5.

Labelled transition systems Conceptually, SibylFS sim-
ply defines a labelled transition system: a nondeterministic
infinite-state automaton where the states are abstract (model)
file system states and the transitions (mostly) correspond to
libc API calls and returns, labelled with the call parameter
values and return values. Each model state can correspond
to potentially infinitely-many real-world states. As a result,
SibylFS only needs to track a finite number of model states
to accurately represent all real-world possibilities.

Formally, an LTS can be thought of as a tuple
(S,L, S0, R), where S is a set of states, L is a set of labels,
S0 ⊆ S is a set of start states, and R ⊆ S×L×S is a set of
triples (known as the transition relation): a triple (s, lbl, s′)
indicates that, from state s, a transition labelled with lbl to
state s′ is possible.

POSIX API module The POSIX API module defines a
labelled transition system. Labels correspond to relevant
events: those for a process calling a libc function, a value
being returned to a process from a call, process creation and
destruction, and τ events used to model an “internal” sys-
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tem transition (perhaps corresponding to asynchronous exe-
cution of a kernel thread). These are modelled using the Lem
type os label.

type os label =
| OS CALL of (ty pid × ty os command)
| OS RETURN of (ty pid × error or value ret value)
| OS CREATE of (ty pid × uid × gid)
| OS DESTROY of ty pid
| OS TAU

This defines a new datatype (similar to a tagged union or
variant type) where values may be one of the five possible
variants, distinguished by constructors such as OS CALL,
and each holding an immutable tuple of the associated type.
For example, if the value pid is of type ty pid (representing
a process id) and c is of type ty os command (representing a
particular instance of a libc function call such as link), then
OS CALL(pid, c) is a value of type os label (representing
the event where process pid makes a libc call c). The type
ty os command (used in the OS CALL constructor) models
the various libc functions and their arguments:

type ty os command =
| OS CLOSE of ty fd
| OS LINK of (cstring × cstring)
| . . .

The states of the model must represent real-world sys-
tem states, including processes, open file descriptors, file
descriptions and so on. The key type of model states,
ty os state, is a Lem record type:

type ty os state . . . = 〈
oss fid table : fmap ty fid (fid state ’dir ref ’file ref);
oss group table : fmap gid (finset uid);
oss pid table : fmap ty pid (per process state ’dir ref);
. . .〉

The field oss fid table is a finite map (fmap) from open file
description references (ty fid) to the state of the file de-
scription (fid state ’dir ref ’file ref ); here the pre-primed
identifiers are generic type variables, and fid state is actu-
ally a type constructor parameterised on arbitrary ’dir ref
and ’file ref types. The field oss group table is the mapping
from group ids to (sets of) user ids. The field oss pid table
holds the per-process information tracked by the operating
system. This includes the current working directory, file de-
scriptors and directory handles, process run state, and vari-
ous permissions-related state, such as the file creation mask,
and the real and effective user ids.

We have now defined the states and the labels of our LTS.
For the transition relation one might expect a relational defi-
nition, specifying a set of triples (s, lbl, s′), but a mathemat-
ically equivalent and more computationally convenient form
of definition is as a function that takes a state and a label,
and returns a finite set of states; we have a top-level function
os trans with that type:

val os trans : ty os state→ os label→
finset os state or special

There is a subtlety here: the type finset
os state or special represents a finite set of elements,
which are either normal states, or “special states”
which correspond to POSIX undefined, unspecified
and implementation-defined behaviours, as described in
§1.1. If we ignore special states, the result type indeed
represents a set of file system states.

The remainder of the model defines the transition rela-
tion: given a state, and a label corresponding to a libc func-
tion call, the definition of os trans uses the path resolution
module to resolve paths, and then calls the file system mod-
ule to process the function itself. In addition to this, os trans
must deal with processes and concurrency, open file descrip-
tors, file descriptions and so on.

A trace such as that in Fig. 3 is a sequence of labels.
SibylFS checks a trace step by step. At each step i of the
trace, SibylFS maintains a finite set Si of values of type
ty os state, which represents all the states that the real-
world file system might be in. For each label lbli, SibylFS
applies os trans to each element of Si, and takes a union
of the resulting sets to form the set of values Si+1 at the
next step. The initial set S0 consists of a single state s0
representing an empty file system. In effect, given S0 and
the sequence of labels, SibylFS computes a sequence S0

lbl1→
S1

lbl2→ S2 . . .. If the end of the trace is reached at lbln and the
set Sn is non-empty, then the trace is accepted by the model.
If the set Si of possible file system states at step i is ever the
empty set, then this indicates that the trace is not accepted
by the model.

Path resolution module Path resolution is complicated for
several reasons. The resolution of even simple paths (no
symlinks, no permissions) can be counter-intuitive on real-
world systems, particularly when the path ends in a trailing
slash e.g. the path /tmp/f.txt/ is sometimes resolved suc-
cessfully under Linux, even when f.txt is a non-directory
file. Symlinks introduce much additional complexity. For ex-
ample, symlinks that occur as the last component of a path
are sometimes followed and sometimes not, depending on
the libc function involved and flags such as those for open;
this “follow last symlink” behaviour is further complicated
by trailing slashes on the path (a trailing slash makes it more
likely the symlink is followed). Permissions further compli-
cate matters. For example, there is the question of how per-
missions interact with path resolution, and what permissions
should be assigned to symlinks.

Our model clearly describes the behaviour of path resolu-
tion in terms of the inputs to path resolution, and the output
resolved path. The result of path resolution is captured by
the resolved name type res name:
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type res name ’dir ref ’file ref =
| RN dir of (’dir ref × . . .)
| RN file of (’dir ref × name × ’file ref × . . .)
| RN none of (’dir ref × name × . . .)
| RN error of (error × . . .)

Intuitively path resolution can give four possible results:
the path can resolve to a directory (constructor RN dir), a
non-directory file (RN file), or an error can occur during
resolution (RN error), or the path might resolve to “none”
(RN none), representing a non-existent entry in a directory.
This last possibility occurs, for example, for functions such
as mkdir, where the given path is intended to reference a
non-existing entry that will be created by the function.

File system module The file system module defines the
behaviour of individual functions such as link and rename.
Internal to the model, its API is expressed using resolved
names. In Fig. 6 we gave an excerpt from the file system
module: the checks that the rename command must make.

State module The state module provides a simple model of
directory and file contents. The main type is a record type
which includes a field dhs dirs (a finite map from directory
references to directories) and a field dhs files (a finite map
from file references to files):

type dir heap state fs = 〈
dhs dirs : fmap dh dir ref dh dir;
dhs files : fmap dh file ref dh file;
. . . 〉

The interface to the state model is expressed in terms
of references to files and directories (types dh dir ref and
dh file ref). The state-model API permits arbitrary linking
and unlinking, in particular, our model can handle directory
links, and disconnected files and directories can also be
modelled (a disconnected file is one that does not appear in
the directory tree, but is still accessible).

Contrasting this to the block-structured storage state one
might find in a typical file system implementation is instruc-
tive: the model can abstract from all that implementation de-
tail while still correctly describing the envelope of allowed
behaviour visible at the API we consider, and that abstrac-
tion is essential to make the model simple.

6. Test suite and harness
In §2 we gave an overview of the system, and described the
virtuous circle formed by testing and revising the model. We
now describe the tests and test execution in more detail.

6.1 The tests
Autogenerated scripts test commands such as link and
rename where combinatorial testing is straightforward, fea-
sible, and expected to cover all static real-world behaviour.
The combinatorial nature of the tests means that functions
such as link and rename which take two arguments have

many more tests than functions such as rmdir which take
only one. The open function has an especially large number
of tests because one argument is a bitfield of open flags.

To reduce the test cases to a finite number, we use equiv-
alence partitioning, which requires identifying classes of in-
puts where a function is assumed to behave “the same”,
and testing only one member of each class. For example,
in a given file system state where neither f1 nor f2 ex-
ist, the behaviour of rename f1 f1 should be the same as
rename f2 f2, so it suffices to test only one of these two
possibilities: the assumption is that the exact name of a file
is irrelevant. A potential weakness is that these assumptions
might not actually hold for real-world file systems. For ex-
ample, even if neither f1 nor .snapshot exist, it could be
that any reference to .snapshot triggers unusual file system
behaviour so that rename .snapshot .snapshot behaves
differently to rename f1 f1. Our tests would typically fail
to establish this difference. This is an inherent weakness in
equivalence partitioning, not specific to our use.

The equivalence classes are based on properties (of file
system state, and the file system API calls) which we believe
affect file system behaviour. For example, properties of paths
used in API calls include: whether the path ends in a slash;
whether it starts with 0, 1, 2, or ≥3 slashes; whether it
is the empty string; whether it is a single slash; the type
of the resolved path (file, directory, symlink, nonexistent,
error); if the resolved path is a directory, then the number of
entries in the directory; and whether the path has a symlink
component or not. These properties are used to construct
equivalence classes. We then make sure that we have at
least one test case for each logically-possible combination
of properties. For API calls involving two paths (such as
rename) we consider all combinations of properties of each
path individually, together with equivalence classes based
on properties of two paths: whether they are equal or not;
whether they are different paths to the same file (hard links);
and whether one path is a proper prefix of the other. Again,
we ensure we have at least one test case for each logically-
possible combination of properties.

The construction of equivalence classes is carried out
manually: extensive human involvement is necessary to de-
termine which combinations of properties are logically pos-
sible. For example, it makes no sense to require that a path
corresponds to an empty directory, and is at the same time
a proper prefix of a path that corresponds to a file (or di-
rectory or symlink). Potentially the model itself could be
used to determine that certain combinations are not possi-
ble. We suspect that this could not be done automatically,
but would require significant proof effort for each combina-
tion, and there are many logically-impossible combinations.
Even if we could automatically determine whether a combi-
nation was logically possible, constructing missing test cases
requires human involvement (see below). Instead of using
the model, we manually inspect each combination for which
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no test case is available, to certify that the combination is in-
deed impossible. This takes significant effort, and there is the
danger that the human mistakenly labels some combination
as impossible, and thereby omits an interesting test case. If a
combination is possible, but no test case exists, we manually
examine the combination, identify (at least one) missing test
case, and extend our automatic test generation to include this
case. As an example of the missing test cases our approach
uncovered, for commands involving a single path, our test
suite initially lacked test cases which resulted in a path res-
olution error, where the error was not due to a trailing slash
on the end of a file. The fix was to include commands that
attempt to resolve a nonexistent file in a nonexistent direc-
tory; a nonexistent file (in an existing directory) does not suf-
fice since it resolves to RN_none rather than RN_error. We
used OCaml to model properties and equivalence classes,
and mechanically verify that all logically-possible combina-
tions were matched by at least one test case.

For commands such as read and write we need to test
sequences of calls, which is inherently hard to test combina-
torially. We therefore wrote extensive manual tests, attempt-
ing to cover all possible behaviours. We have done prelimi-
nary investigation of automated generation of tests for these
calls but this is future work. An alternative is to use random-
ized testing.

The standard OpenGroup POSIX test suite includes hand-
written code to check the results of calling libc functions.
Our use of combinatorial testing, made possible by the
SibylFS oracle, allows us to test many more cases: 2 500 au-
togenerated scripts for rename alone, supplemented by fur-
ther hand-written scripts, whereas the OpenGroup test suite
for rename includes around 50 tests. On the other hand, they
test a wide range of POSIX functionality, whereas we test
file system functions only.

6.2 Script execution
Test scripts may involve multiple processes making libc
file system calls. Each test script execution forks an inter-
preter process from the controller process to provide sig-
nal and fault isolation. The interpreter process then reads,
parses, and dispatches script commands over a high-fd
UNIX socket to worker processes running in a chroot jail.
Each worker runs with real user and group IDs and supple-
mentary group IDs generated to match the permissions rela-
tions for the corresponding process in the script. Our use of
chroot jails means that we can effectively test as if the file
system namespace is empty. This design trades off complete
accuracy regarding the behaviour of the root directory (e.g.,
in a chroot jail the root directory link count is typically off-
by-one compared to a non-chroot setup), for fast, reliable
execution. We have considered testing modes involving per-
test virtualization but have not yet constructed such a test
harness.

6.3 Testing, interleaving, concurrency and races
The SibylFS model allows interleaving and concurrent be-
haviours and many test scripts involve multiple processes
making interleaved libc calls. However, in-kernel racy be-
haviours are inherently difficult to elicit from real-world sys-
tems, and such racy behaviour, although modelled, is not
currently tested. In this section we clarify the nature of
the interleaving and concurrent behaviours allowed by the
SibylFS oracle, and the difficulty in testing racy behaviours.

A file system API function call and return is not mod-
elled as an atomic event. Instead, there is an initial event
corresponding to the call, a second internal τ event corre-
sponding to the libc/OS/file system processing the call, and
a final event corresponding to the return from the libc call.
Additionally, the model satisfies a receptivity property: at
any time, any running process can make a libc call, at which
point the process blocks until the call returns. This model
allows multiple processes to execute calls concurrently. Test
scripts can involve multiple processes, each making calls to
libc. For example, many of our hand-written test scripts in-
volve multiple processes making interleaved calls to libc, in
order to test file system features such as ownership and per-
missions. The test infrastructure will execute a script line-
by-line and no attempt is made to execute calls from differ-
ent processes at the same time: typically a libc call from one
process will complete before the test infrastructure executes
a call from another process.

It should be possible to extend the test infrastructure to
initiate libc calls from different processes simultaneously,
perhaps by assigning different processes to different cores.
This would at least make it possible for concurrent calls to
race in the kernel, but the probability of a race actually oc-
curring would likely be very low (there is no way to force
calls to race in the kernel). The next step would be to run
such potentially-racy tests many times, to try to increase the
chance of racy behaviour being observed. However, the time
cost of doing this for a large test suite such as ours is pro-
hibitive, and such racy testing should probably be restricted
to particular test scenarios where the racy behaviour is ex-
pected to be “interesting”.

7. Evaluation and test results
Testing focused on the Linux, OS X and FreeBSD operating
systems for which we have models. On Linux, we tested
tmpfs, Btrfs, ext2, ext3, ext4, F2FS, XFS, HFS+, MINIX,
NILFS2, NFSv3/tmpfs, NFSv4/tmpfs, fusexmp/tmpfs
(the example FUSE pass-through backed by tmpfs),
SSHFS/tmpfs, bind/tmpfs, posixovl/VFAT, posixovl/NTFS-
3G, aufs/tmpfs/ext4, overlay/tmpfs/ext4, GlusterFS/XFS,
and OpenZFS. On OS X, we tested HFS+, NFSv3/HFS+,
fusexmp/HFS+, SSHFS/HFS+, fuse-ext2, Paragon ExtFS,
and OpenZFS. On FreeBSD, we tested tmpfs and ufs. In
addition, on Linux we compared the standard libc (glibc)
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and the lightweight libc musl, and kernels 3.13, 3.14, and
3.19.

An individual test run currently executes 21 070 tests and
produces 46MB of trace data. Because manually analysing
system traces of this volume is difficult, we index, filter,
and highlight specification deviations in HTML. Our tools
can also produce merged test runs comparing local speci-
fication deviations across multiple platforms with platform
differences identified and highlighted. With appropriate ex-
perimental design, OS, file system, and libc defects are easy
to find.

7.1 Performance
To use our specification during file system development
or behavioural exploration, individual script execution and
trace checking must run quickly. As described in §3, non-
determinism can, without careful management, lead to very
long run times. In our checking system, we have both en-
gineered the specification to ruthlessly control nondetermin-
ism and taken advantage of trace independence for parallel
speedup.

Trace checking the entire test suite with 4 processes on a
machine running Linux 3.14-2 with an Intel Core i7-3520M
2.90GHz CPU with performance governor, Samsung 840
PRO SSD, and 12GB RAM takes about 79s, which is a mean
rate of 266 test traces per second. With test suite execution
on Linux tmpfs clocking in at 152s, it takes less time to
check a trace set than it does to execute the test suite. Our
naı̈ve single-threaded HTML generator takes about 48s to
process a single, unmerged test run. Thus, we believe the
performance of SibylFS is suitable for use during develop-
ment and continuous integration. The slowest phase of test-
ing is due to user and group creation: we need to employ
application-level locking to avoid race conditions on Linux,
OS X, and FreeBSD; these race conditions have been re-
ported upstream. We have not yet aggressively optimized ei-
ther the test harness or the checker architecture. For example,
we spawn a new process for each trace being checked.

7.2 Test results
Trace acceptance For the “standard” Linux platforms
(Linux 3.19, with glibc and either ext2, ext3, or ext4), all but
9 of 21 070 traces are accepted by SibylFS. The 9 failures
are mostly due to the use of a chroot jail for testing, i.e.,
they do not represent real deviations of the underlying file
system from the SibylFS model. For other Linux platform
variations, failing traces differ mostly in aspects that POSIX
indicates are implementation-defined or unspecified. These
include default permissions for symlinks, writing 0 bytes to
bad file descriptors, and specific errors due to removal or re-
naming of the root directory.

On OS X 10.9.5 with the default HFS+ file system, the
script which tests pwrite with a negative offset fails to exe-
cute to completion due to an integer underflow bug in OS X
(§7.3.4). In total, 34 traces fail to check, due to a handful

of issues similar to the Linux failures, and the resolution of
symlinks with trailing slashes (which we are presently cor-
recting). The FreeBSD results are similar.

Test coverage To understand the completeness of our test
suite, we measured the proportion of lines in the model that
are covered by a test run (statement coverage). The ideal tar-
get of 100% coverage is not possible for two reasons. First,
some lines of the model correspond to situations that are im-
possible to reach. However, the fact that these situations are
not reachable is often far from obvious, so we have explicitly
included annotated lines covering these cases as a form of
documentation, and as a guarantee of exhaustivity of match
clauses. Second, clauses for particular platform behaviour
will not be exercised when checking traces for another plat-
form. This can be addressed by annotating each line of the
specification with the relevant platforms. Taking these fac-
tors into account, our tests currently cover 98% of the model.
The remaining 2% consist of lines that probably could be
tested (for example, we do not currently test process destruc-
tion during a test), and lines for unused internal definitions
generated by Lem (which should be excluded from our anal-
ysis).

The high level of coverage is partially attributable to
our decision to use automatically generated test cases in
an attempt to exhaustively explore all behaviours. Related
work [14] has used randomized testing of the POSIX file sys-
tem interface applied to a novel file system implementation,
achieving 89.06% coverage of the implementation code. If
one considers the model as a (non-deterministic) reference
implementation, there is a sense in which these figures are
comparable.

Our coverage figures come with a caveat: these figures
show only that the test scripts produce traces whose check-
ing exercises almost all of the model. As noted earlier, it may
still be the case that the assumptions underlying equivalence
partitioning are invalid or that some real-world behaviour,
unrepresented in the model, is not being tested.

Our tests aim for complete implementation code cover-
age, but we use coverage of the model, rather than coverage
of the implementations, for two main reasons. First, we be-
lieve that the model is detailed and accurate (although admit-
tedly this belief partly depends on the testing itself), so that
tests which cover the model should also exercise all interest-
ing behaviours of the implementations. Second, attempting
to measure implementation coverage is difficult. There are at
least three distinct pieces of code which form an implemen-
tation (the libc library, the OS, and the file system implemen-
tation code), and only parts of each piece are in the domain
of the SibylFS model. In order to measure implementation
coverage, we would first need to determine, for each of the
three pieces, which lines of code are relevant, and which are
not, so that we can restrict our coverage checking to the rel-
evant lines. This requires expert knowledge of libc, the OS
and the file system code, but should be possible for a sin-
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gle test platform, and we believe this would provide further
evidence that the tests provide high coverage. However, pro-
viding such implementation coverage for each of the many
combinations of libc, OS and file system that we consider,
would surely be infeasible.

7.3 Survey results
In our testing of over 40 different system configurations,
we discovered numerous deviations from the specification
ranging from mundane to critical. We classify by increasing
severity the file system defects found during our survey.

7.3.1 Issues in the POSIX specification
POSIX specifies the behaviour of each libc function sepa-
rately, with clauses for common errors duplicated between
functions. Almost inevitably it is difficult to keep these
clauses in sync when updating the POSIX text, and minor
mistakes have crept in. Our formal model is in part a formal
counterpart to the informal POSIX specification, and clauses
in the formal model that were not uniform suggested under-
lying issues with the POSIX specification. For link, mkdir
and open we queried the POSIX specification of the allow-
able errors on the Austin Group mailing list; new issues were
recorded and subsequently resolved on the Austin Group bug
tracker.

7.3.2 POSIX specification violation
Core behaviour If we restrict to successful invocations of
libc functions, for file system states which do not contain
symlinks, and paths that do not end in a trailing slash, and
if we ignore permissions and work with a single process,
then the behaviour across most system configurations is very
similar. On some file systems, specific features such as direc-
tory link counts are not supported. Btrfs, SSHFS/tmpfs, and
Linux HFS+ all exhibit this violation with SSHFS/tmpfs also
not supporting link counts for regular files due to limitations
in the SFTP protocol.

Error codes POSIX often allows different errors in a given
circumstance, and this looseness is present in implementa-
tions: Linux is substantially different from OS X and, even
on the same operating system, different file systems can re-
turn different errors in the same situation. There are also
cases where error codes not allowed by POSIX are returned;
for example, Linux follows the LSB for unlink of directo-
ries and returns EISDIR, where OS X follows POSIX and re-
turns EPERM. On OS X, when attempting to rename the root
directory, EISDIR is returned instead of EBUSY or EINVAL.

Path resolution, trailing slashes, and symlinks Trailing
slashes on paths, even without symlinks, are treated in what
appears to be an ad hoc manner. For example, if f.txt is
a path to a file, then f.txt/ intuitively should result in an
error, but often such a path is resolved successfully. For ex-
ample, on Linux link /dir/ /f.txt/ can return EEXIST

to indicate that the file f.txt exists (this is not allowed by

POSIX), whereas one might expect ENOTDIR to indicate that
the path /f.txt/ cannot be resolved because f.txt is not
a directory. Symlinks introduce further complications. For
example, a path to a symlink followed by a trailing slash
is often used to mean “resolve to the target of the symlink
(even if a file)”, but this is not universally followed on ei-
ther Linux or OS X. The behaviour when symlinks to sym-
links are involved can be confusing. For example, if s1 is
a symlink to a directory, and s2 is a symlink to s1, then
on OS X, readlink s2/ will return the contents of the
symlink s1, whereas one might expect that the trailing slash
would force the path to be resolved to the directory, resulting
in an EINVAL error returned by readlink. Creation of hard
links to symlinks using link is permitted by Linux and sup-
port is specified as implementation-defined. Notably, HFS+
on Linux returns EPERM when this is attempted rather than
either linking the symlink or following the symlink as OS X
does. This behaviour is likely a portability compromise for
removable volumes.

Invariants POSIX specifies that calling open with flags
O_CREAT, O_DIRECTORY and O_EXCL on a symlink to an
existing directory should fail with EEXIST. FreeBSD instead
returns ENOTDIR. POSIX also mandates a strong invariant:
a libc call which returns with an error should leave the
underlying file system state unchanged. On Linux and OS X
this invariant holds for all our tests. However, in the above
scenario, as well as returning the ENOTDIR error, FreeBSD
deletes the symlink and replaces it with a newly created file.
This breaks the POSIX invariant. If the symlink points to
a non-existent target rather than a directory, and the flag
O_EXCL is omitted, then the new file is created as the target
of the symlink and ENOTDIR is returned, again violating the
invariant.

7.3.3 Platform conventions
Some platforms, such as Linux, have well-known and long-
standing defects in their POSIX compliance. For example,
on Linux, calling pwrite on a file descriptor opened with
O_APPEND will ignore the offset and instead append data to
the file. It is crucial that any file system or application soft-
ware ported to or from Linux ensure that it follows this con-
vention on Linux and provides or expects POSIX compli-
ance on operating systems that attempt POSIX compliance.
Our specification and development process ensures that we
explicitly express and check behaviour of this kind.

7.3.4 Defects likely to cause application failure

A comparison of SSHFS/tmpfs mount options An or-
ganization’s system administrator might consider deploy-
ing a shared SSHFS/tmpfs mount to their users and won-
der what mount options to use in the configuration scripts.
With SibylFS, the administrator can easily compare, in un-
der an hour, the behaviour of various mount configurations
in their specific deployment of SSHFS/tmpfs and conclude
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mkdir("deserted",0700);

chdir("deserted");

rmdir("../deserted");

open("party",O_CREAT | O_RDONLY,0600);

Figure 8. Function call sequence causing OpenZFS 1.3.0
on OS X 10.9.5 to unkillably spin processes

that, using only allow_other is dangerous because it al-
lows users to violate permissions, using allow_other and
default_permissions is safer but still is not adequate for
a shared mount deployment due to SSHFS/tmpfs’s uncon-
figurable default creation ownership set to the mount owner
(root). Additionally, without a mount option umask, a user
process’s umask is bitwise ORed with 0022 (regardless of
the parent process’s umask) but when setting a mount op-
tion umask of 0000, a user process’s umask is ignored en-
tirely. Using this empirical evidence, the system administra-
tor is now informed enough to reject SSHFS/tmpfs for this
deployment scenario.

OS X VFS pwrite integer underflow and signal POSIX
specifies a negative offset to pwrite should return an
EINVAL error. We believe the OS X VFS layer incorrectly
uses an unsigned integer type for the offset argument to
pwrite which causes negative values to be interpreted as
extremely large positive values, and the operating system
then sends a SIGXFSZ signal to the process which almost
certainly does not handle it. This results in premature, poten-
tially unclean process termination for what otherwise would
be a simple error condition.

Various issues in deployed but older versions of Linux
In Ubuntu “Trusty” Linux 3.13.0-34, HFS+ did not support
chmod and would return EOPNOTSUPP for every chmod call.
This was not the case in Debian “sid” Linux 3.14-2.

In OpenZFS 0.6.3-2~trusty, also on Ubuntu “Trusty”
Linux 3.13.0-34, files opened with O_APPEND would not
seek to the end of the file before either write or pwrite
potentially resulting in application malfunction and data loss
or corruption.

7.3.5 Defects causing system halt, data loss, or
resource exhaustion

posixovl/VFAT 1.2 storage leak posixovl is an overlay file
system which provides POSIX functionality on file systems
such as VFAT. Our test suite revealed that posixovl/VFAT
fails to decrement the hard link count correctly in certain
rename scenarios. We wrote a simple C program to repeat-
edly create 64MB files with hard links and delete them using
rename. On Linux 3.14, this resulted in the process receiv-
ing a SEGFAULT. On Linux 3.19, we found that the openwith
O_CREAT libc call would fail with ENOENT. In both cases,
the file system would have no remaining space despite being
empty – even through an unmount cycle.

OpenZFS on OS X unkillably spins processes in a dis-
connected directory case OpenZFS 1.3.0 on OS X 10.9.5
has a defect which, after executing the sequence of function
calls in Fig. 8, causes the calling process to consume 100%
CPU and ignore all signals. The file system is still usable by
other processes at this time but the OpenZFS volume cannot
be unmounted and the machine cannot be shutdown. Force
unmounting the OpenZFS volume may succeed and release
the storage device or may cause the storage device to become
unusable until the next restart.

8. Related work

Model checking Yang et al. [35] have used model checking
to find serious file system errors. Their FiSC tool included
a simple model of file system state (name, size and link
count for files and directories), sufficient for finding errors,
but not intended as a realistic model of file systems in the
way that SibylFS is. FiSC requires intrusive access to file
system internal state: “ReiserFS took between one and two
weeks of effort to run in FiSC as it violated one of the larger
assumptions we made”. In contrast, we have opted to test file
systems solely via the libc interface, making it trivial to test
new file systems. FiSC is also focused on errors typically
arising from host crashes. SibylFS does not currently model
such scenarios at all.

Ad-hoc models FiSC includes a simplified, ad-hoc file sys-
tem model. Such models are reasonably common. For ex-
ample, the COMMUTER tool [6] includes a model expressed
in a symbolic variant of Python. The model is simplified,
e.g., filenames have no structure and can only be compared
for equality, and there is no support for symlinks. Even
these simplified models can take significant time to develop,
and are typically not reused across projects. We believe the
SibylFS model is more detailed and better validated, and we
hope that it will be reused in place of such ad hoc models in
future file system research projects.

The COMMUTER project is similar to our work in other
respects. They use equivalence partitioning to ensure only
a finite number of tests are generated, which nevertheless
“cover all possible paths and data structure access patterns
in the model”. As with our work, they focus on coverage
of the model, rather than implementation code. Moreover,
their tests are somewhat simplified because, in addition to
the model simplifications described above, their test cases
do not deal with directories (other than the root directory).

Differential testing Differential testing compares the be-
haviour of multiple implementations to identify possible er-
rors without a reference model [26]. In some cases it can
be very effective, e.g. for C compilers [36]: by restricting
the domain to C programs that (according the C standard)
should be deterministic, any behavioural difference in com-
piled programs identifies a compiler bug. File systems are
more complicated to test because of nondeterminism, with a
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large envelope of allowable behaviours within which file sys-
tems are expected to behave differently, so one cannot sim-
ply compare runtime behaviours without a reference model
that identifies when they are sufficiently similar. SibylFS in-
stead allows differential testing of multiple file systems tak-
ing this allowable variability into account. In this sense it
improves on differential testing, but the downside is the ef-
fort needed to construct the model.

Differential testing has also been applied to a novel file
system implementation [14] to ensure it behaved the same
as a reference implementation.That paper also applied ran-
domized testing to file systems, a low-cost alternative (that
SibylFS also supports) to the model checking approach de-
scribed earlier. SibylFS can also be used as a reference im-
plementation by determinizing the model (selecting one of
the many possible states at each step) and we have mounted
previous versions of SibylFS as prototype FUSE file systems
under Linux. The good performance of the SibylFS test or-
acle should also make it feasible to integrate with dynamic
verification engines such as EnvyFS [2] or Recon [12].

Formal methods Previous models of file systems [11, 27]
do not aim to capture the full complexity of POSIX or real-
world file systems. As a result they are usually much sim-
pler than our model: symlinks, permissions and timestamps
are ignored, and there is no model of concurrent processes
and per-process datastructures. Recently Schierl et al. gave
an abstract specification of a single file system: UBIFS [32].
However, this is not a general model of POSIX. No previous
work that we are aware of has attempted to formally model
the subtle behavioural quirks of real-world systems as we do
for Linux, OS X and FreeBSD. Work on verified implemen-
tations is complementary to our work: it should be possible
to prove that a verified implementation behaves according
to our model. Implementations of file systems have previ-
ously been formally verified [7, 8, 10, 11, 16, 18], but these
are highly idealized and do not represent realistic file system
implementations. The seL4 team previously produced a ver-
ified operating system [20], and some of the researchers are
now working on a formally verified file system implementa-
tion [19]. Another approach [4] uses a modified Hoare logic
inside the Coq theorem prover to attempt to prove correct-
ness of a novel file system implementation. The specification
is based on POSIX, but does not attempt to deal with the full
variability allowed by POSIX and real-world implementa-
tions, since the focus is on a single verified implementation.
The authors note, “we found that significant care is needed
when writing specifications [. . . ] it is easy to write an incom-
plete specification that does not eliminate the possibility of
some bugs”. As with other ad hoc models, SibylFS could be
used as an alternative, high-quality specification. Recently
Ernst et al. [9, 29, 31] achieved a significant milestone by
producing a verified implementation based on UBIFS that is
actually usable as a flash file system.

Preliminary work on specifying the semantics of stor-
age stacks in Isabelle/Isar has been carried out [1]. The re-
searchers argue for expressive logics to capture specifica-
tions of each layer, and theorem prover support for proving
that file system stacks satisfy the desired guarantees. The re-
searchers list “obtaining specifications” as one of the main
challenges. At least for the uppermost layer that is exposed
to the application, SibylFS can provide such a specification.

For reasoning about POSIX file system behaviour, Gard-
ner et al. [13] proposed a variation of separation logic. The
SibylFS model could be used as a basis to prove soundness
for this logic.

File system innovation Recent studies have shown that
the workloads imposed on POSIX file systems now vary
widely [15], and there are also many new FUSE-based file
systems such as Ori [25], OptFS [5], and kernel-based ones
such as Betrfs [17] and ReconFS [24] that optimise partic-
ular use cases. File system evolution in this style often re-
sults in subtle semantic and data corruption bugs [23], and
SibylFS is the first rigorous specification that can be used,
in a developer-friendly way, to test directly that these imple-
mentations remain POSIX compliant.

9. Conclusion and future work
SibylFS gives a detailed, precise, and usable characterisation
of the behaviour of a range of file systems. As described in
§1, it should be immediately usable for multiple purposes,
and it also opens up many directions for future work.

With modest additional engineering, SibylFS could sup-
port analysis of API traces of applications, identifying when
they rely on non-portable aspects of the model; by providing
an executable test oracle it could support randomised testing;
and it could support automatic test case reduction. It could
and should also be extended with extensive testing of con-
current API calls and timestamps, with modelling and test-
ing of behaviour in the presence of crash failure, and with
testing that imposes more resource stress on file system im-
plementations. On the theoretical side, SibylFS provides, in
the HOL4 and Isabelle/HOL theorem prover definitions gen-
erated from our model by Lem, a basis for rigorous proof
about file system properties and about software that uses file
systems. Especially, it can serve as a specification of correct-
ness for work on verified file systems.

Most generally, one can see SibylFS as a novel instrument
for examining behavioural differences in a largely black-box
fashion. We have done this for file systems, but much of our
approach should also be applicable in other contexts.
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MAZIÈRES, D. Replication, history, and grafting in the Ori
file system. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 151–166.

[26] MCKEEMAN, W. M. Differential testing for software. Digital
Technical Journal 10, 1 (1998), 100–107.

[27] MORGAN, C., AND SUFRIN, B. Specification of the Unix
filing system. Software Engineering, IEEE Transactions on
10, 2 (1984), 128–142.

[28] MULLIGAN, D. P., OWENS, S., GRAY, K. E., RIDGE, T.,
AND SEWELL, P. Lem: reusable engineering of real-world
semantics. In Proceedings of ICFP 2014: the 19th ACM SIG-
PLAN International Conference on Functional Programming
(2014), pp. 175–188.
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