
Push-Button Verification of File Systems via Crash Refinement

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, Xi Wang
University of Washington

Abstract
The file system is an essential operating system com-
ponent for persisting data on storage devices. Writing
bug-free file systems is non-trivial, as they must correctly
implement and maintain complex on-disk data structures
even in the presence of system crashes and reorderings
of disk operations.

This paper presents Yggdrasil, a toolkit for writing
file systems with push-button verification: Yggdrasil re-
quires no manual annotations or proofs about the im-
plementation code, and it produces a counterexample
if there is a bug. Yggdrasil achieves this automation
through a novel definition of file system correctness
called crash refinement, which requires the set of pos-
sible disk states produced by an implementation (includ-
ing states produced by crashes) to be a subset of those al-
lowed by the specification. Crash refinement is amenable
to fully automated satisfiability modulo theories (SMT)
reasoning, and enables developers to implement file sys-
tems in a modular way for verification.

With Yggdrasil, we have implemented and verified the
Yxv6 journaling file system, the Ycp file copy utility, and
the Ylog persistent log. Our experience shows that the
ease of proof and counterexample-based debugging sup-
port make Yggdrasil practical for building reliable stor-
age applications.

1 Introduction
File systems are a vital operating system service for user
applications to manage and persist data. Their correct-
ness is critical to system reliability; file system corrup-
tion can damage files and even render the disk unable to
mount [12, 13]. Correctly implementing a file system is
difficult [23], due to the need to maintain complex on-
disk data structures that must remain consistent in the
face of power failures and system crashes. Many bugs
have been found in commonly used file systems, and
have led to serious data losses [27, 35, 39, 45, 52, 54].
Such bugs are likely to continue proliferating due to the
complexity of modern storage stacks [1, 8].

Yggdrasil is a toolkit that helps programmers write file
systems and formally verify their correctness in a push-
button fashion. Yggdrasil asks programmers for three in-
puts: a specification of the expected behavior, an imple-

mentation, and consistency invariants indicating whether
a file system image is in a consistent state. It then per-
forms verification to check if the implementation meets
the specification. If there is a bug, Yggdrasil produces
a counterexample to help identify and fix the cause. If
the verification passes, Yggdrasil produces an executable
file system. It requires no manual annotations or proofs
about the implementation code.

A key challenge for push-button file system verifica-
tion is to minimize the proof burden. One approach to
verified file systems is to ask programmers to construct a
proof of implementation correctness using an interactive
theorem prover such as Coq [11] or Isabelle [33]. Pio-
neering work in this direction includes COGENT [2, 34],
Flashix [16, 47], and FSCQ [7], which are impressive
engineering achievements. However, writing proofs re-
quires both a high degree of expertise and a significant
time investment. For instance, Amani et al. reported that
verifying two operations of the BilbyFs file system took
9.25 person months, writing 13,000 lines of proof for
1,350 lines of code [2]. Verifying the FSCQ file sys-
tem took Chen et al. 1.5 years; the code size is 10×
that of xv6, an unverified file system with similar fea-
tures [7]. To free programmers from such a proof burden,
Yggdrasil provides fully automated reasoning.

Conceptually, showing that a file system is correct in-
volves exploring its behavior along all execution paths
and against all possible disk states. In practice, such ex-
haustive exploration is intractable: file systems operate
on massive inputs (e.g., entire disks); their code often
has many execution paths; and non-determinism adds
even more complexity, since one needs to reason about
crashes at arbitrary points during execution and reorder-
ings of writes due to the disk cache. Existing file-system
automated reasoning tools [52–54] therefore focus on
bug finding rather than verification.

Yggdrasil scales up automated reasoning for verify-
ing file systems with the idea of crash refinement, a new
definition of file system correctness. Crash refinement
captures the notion that even in the presence of non-
determinism, such as system crashes and reordering of
writes, any disk state produced by a correct implementa-
tion must also be producible by the specification (see §3
for a formal definition). This definition is amenable to ef-

1

ficient satisfiability modulo theories (SMT) reasoning, an
extension of boolean satisfiability. Yggdrasil formulates
file system verification as an SMT problem and invokes
a state-of-the-art SMT solver (Z3 [15]) to fully automate
the proof process.

SMT reasoning is not, by itself, a push-button solu-
tion; building verified file systems also requires careful
design. Crash refinement enables programmers to im-
plement file systems by stacking layers of abstraction:
if an implementation is a crash refinement of an (often
much simpler) specification, they are indistinguishable
to higher layers. The higher layers can use lower specifi-
cations without reasoning about the implementation de-
tails. This modular design allows Yggdrasil to verify a
file system by exhausting all execution paths within a
layer while avoiding path explosion between layers.

In addition, crash refinement enables transparent
switching between different implementations that satisfy
the same specification. Programmers can use simple data
structures for verification, and then refine them to more
efficient versions with the same correctness guarantees.
Separating logical and physical concerns in this fashion
allows Yggdrasil to verify complex, high-performance
on-disk data structures.

We have used Yggdrasil to implement and verify
Yxv6+sync, a journaling file system that resembles
xv6 [14] and FSCQ [7], and Yxv6+group_commit, an
optimized variant with relaxed crash consistency [5, 37].
To demonstrate Yggdrasil on a broader set of applica-
tions, we have built Ycp, a file copy utility on top of
Yxv6; and Ylog, which resembles the persistent log from
the Arrakis operating system [36]. We have also built
general-purpose “peephole optimizers” [28] for file sys-
tem code (e.g., removing superfluous disk flushes). We
believe that the ease of verification makes Yggdrasil at-
tractive for building verified storage applications.

We have been using the Yxv6 file system, which runs
on top of FUSE [17], to self-host Yggdrasil’s daily devel-
opment on Linux. It has passed fsstress from the Linux
Test Project [26] and the SibylFS POSIX conformance
tests [42] (except for incomplete features, such as hard
links and extended attributes). We have found its per-
formance to be reasonable: within 10× of ext4’s default
configuration and 3–150× faster than FSCQ. Yggdrasil
focuses on single-threaded systems; verifying concurrent
implementations is beyond the scope of this paper.

This paper makes the following contributions:
• a formalization of file system crash refinement that

is amenable to fully automated SMT reasoning;
• the Yggdrasil toolkit for building verified file sys-

tems through crash refinement; and
• a case study of building the Yxv6 file system and

several other storage programs using Yggdrasil.

specification implementation consistency
invariants

verifier

compiler optimizer visualizer

C code for
file system + fsck

counterexample

failpass

Figure 1: The Yggdrasil development flow. Rectangular boxes
(within the dashed frame) denote input written by program-
mers; rounded boxes denote Yggdrasil’s components; and
curved boxes denote output. Shaded boxes are trusted to be
correct and the rest are untrusted.

The rest of the paper is organized as follows. §2 gives
a walkthrough of Yggdrasil’s usage. §3 presents formal
definitions and the main components. §4 describes the
Yxv6 file system and §5 describes other storage appli-
cations built using Yggdrasil. §6 discusses Yggdrasil’s
limitations and our experience. §7 provides implemen-
tation details. §8 evaluates correctness and performance.
§9 relates Yggdrasil to prior work. §10 concludes.

2 Overview
Figure 1 shows the Yggdrasil development flow. Pro-
grammers write the specification, implementation, and
consistency invariants all in the same language (a subset
of Python in our current prototype; see §3.2). If there
is any bug in the implementation or consistency invari-
ants, the verifier generates a counterexample to visualize
it. For better run-time performance, Yggdrasil optionally
performs optimizations (either built-in or written by de-
velopers) and re-verifies the code. Once the verification
passes, Yggdrasil emits C code, which is then compiled
and linked using a C compiler to produce an executable
file system, as well as an fsck checker.

This section gives an overview of each of these steps,
using a toy file system called YminLFS as a running ex-
ample. We will show how to specify, implement, verify,
and debug it; how to optimize its performance; and how
to get a running file system mounted via FUSE [17].

YminLFS is a log-structured file system [44]. It is kept
minimal for demonstration purposes: there are no seg-
ments, subdirectories, or garbage collection, and files are
zero-sized (no read, write, or unlink). But its core func-
tionality is still tricky to implement correctly due to non-
determinism and corner cases like overflows. In fact, the
verifier caught two bugs in our initial implementation.
The development of YminLFS took one of the authors
less than four hours, as detailed next.

2

2.1 Specification

In Yggdrasil, a file system specification consists of three
parts: an abstract data structure representing the logical
layout, a set of operations over this data structure to de-
fine the intended behavior, and an equivalence predicate
that defines whether a given implementation satisfies the
specification.

Abstract data structure. We start by specifying the
abstract data structure for YminLFS:

class FSSpec(BaseSpec):
def __init__(self):

self._childmap = Map((InoT, NameT), InoT)
self._parentmap = Map(InoT, InoT)
self._mtimemap = Map(InoT, U64T)
self._modemap = Map(InoT, U64T)
self._sizemap = Map(InoT, U64T)

The state of the data structure is described by five
abstract maps, created by calling the Map constructor
with abstract types specifying the map’s domain and
range. The childmap maps a directory inode number
and a name to a child inode number; parentmap maps
an inode number back to its parent directory’s inode
number; and the remaining maps store inode metadata
(mtime, mode, and size). Both InoT and U64T are 64-bit
integer types, and NameT is a string type.

The FSSpec data structure itself places only weak con-
straints on the logical layout of YminLFS. For exam-
ple, it does not rule out layouts in which an inode d con-
tains an inode f according to the childmap, but f is not
contained in d according to the parentmap. The FSSpec

specification disallows such invalid layouts with a well-
formedness invariant:

def invariant(self):
ino, name = InoT(), NameT()
return ForAll([ino, name], Implies(
self._childmap[(ino, name)] > 0,
self._parentmap[self._childmap[(ino, name)]] == ino))

The invariant says that the parent and child mappings
of valid (positive) inode numbers agree with each other.
Both ForAll and Implies are built-in logical operators.

File system operations. Given our logical layout, we
can now specify the desired behavior of file system op-
erations. Read-only operations, such as lookup and stat,
are easy to define:

def lookup(self, parent, name):
ino = self._childmap[(parent, name)]
return ino if ino > 0 else -errno.ENOENT

def stat(self, ino):
return Stat(size=self._sizemap[ino],

mode=self._modemap[ino],
mtime=self._mtimemap[ino])

Operations that modify the file system are more complex,
as they involve updating the state of the abstract maps.

For example, to add a new file to a given directory, mknod
needs to update all abstract maps as follows:

def mknod(self, parent, name, mtime, mode):
Name must not exist in parent.
if self._childmap[(parent, name)] > 0:

return -errno.EEXIST

The new ino must be valid & not already exist.
ino = InoT()
assertion(ino > 0)
assertion(Not(self._parentmap[ino] > 0))

with self.transaction():
Update the directory structure.
self._childmap[(parent, name)] = ino
self._parentmap[ino] = parent
Initialize inode metadata.
self._mtimemap[ino] = mtime
self._modemap[ino] = mode
self._sizemap[ino] = 0

return ino

The InoT() constructor returns an abstract inode number,
which is constrained to be valid (i.e., positive) and not
present in any directory. The changes to the file system
are wrapped in a transaction to ensure that they happen
atomically or not at all (if the system crashes).

State equivalence predicate. The last part of our
YminLFS specification defines what it means for a given
file system state to be correct:

def equivalence(self, impl):
ino, name = InoT(), NameT()
return ForAll([ino, name], And(

self.lookup(ino, name) == impl.lookup(ino, name),
Implies(self.lookup(ino, name) > 0,

self.stat(self.lookup(ino, name)) ==
impl.stat(impl.lookup(ino, name)))))

In particular, we require a correct implementation to con-
tain the same files as the abstract data structure, and each
file to have the same metadata as its abstract counterpart.

Putting it all together. With our toy specification
completed, we now highlight two key features of the
Yggdrasil specification approach. First, Yggdrasil speci-
fications are free of implementation details and are there-
fore reusable. The FSSpec data structure does not man-
date any particular on-disk layout, nor does it force the
implementation to be, for example, a log-structured file
system. In fact, our Yxv6 journaling file system is built
on top of an extension of this specification (see §4).

Second, Yggdrasil specifications are both succinct and
expressive. For example, the specification of mknod pro-
vides two deep properties in just a few lines of code:
crash-free functional correctness (i.e., a file will be cre-
ated with the correct metadata if there is no crash); and
crash safety (i.e., file creation is all-or-nothing even in
the face of crashes).

3

b0 b1 b2 b3 b4 b5 b6 · · ·

SB I1 M

(a) The initial disk state of an empty root directory.

b0 b1 b2 b3 b4 b5 b6 · · ·

SB I1 M I2 D I ′1 M ′

(b) The disk state after adding one file.

Figure 2: YminLFS’s on-disk layout. SB is the superblock; I
denotes an inode block; M denotes an inode mapping block;
D denotes a data block; arrows denote pointers.

2.2 Implementation

To implement a file system in Yggdrasil, the programmer
needs to choose a disk model, write the code for each
specified operation, and write the consistency invariants
for the on-disk layout. We describe the disk model next,
followed by a brief overview of the implementation and
consistency invariants for YminLFS. We omit full imple-
mentation details (200 lines of Python) for space reasons.

Disk model. Yggdrasil provides several disk models:
YminLFS (as well as Yxv6) uses the asynchronous disk
model; we will use a synchronous one in §5. The asyn-
chronous disk model specifies a block device that has an
unbounded volatile cache and allows arbitrary reorder-
ing. Its interface includes the following operations:

• d.write(a, v): write a data block v to disk address a;
• d.read(a): return a data block at disk address a; and
• d.flush(): flush the disk cache.

This disk model is trusted to be a correct specification
of the underlying physical disk, as we discuss in §4.2.
Unless otherwise specified, we assume 64-bit block ad-
dresses and 4 KB blocks. We also assume that a single
block read/write is atomic, similar to prior work [7, 37].

A log-structured file system. YminLFS is imple-
mented as a log-structured file system that works in
a copy-on-write fashion. In particular, it does not
overwrite existing blocks (except for the superblock in
block zero); it has no garbage collection; and it simply
fails when it runs out of blocks, inodes, or directory en-
tries. Its interface provides a mkfs operation for initial-
izing the disk, as well as the operations for reading and
modifying the file system state that we specified in §2.1.

The mkfs operation initializes the disk as shown in Fig-
ure 2a. The effect of the operation is to create a file sys-
tem with a single empty root directory. This involves
writing three blocks: the superblock, an inode I1 for the
root directory, and an inode mapping M that stores the
mapping from inode numbers to block numbers. After

initialization, M has one entry, 1 7→ b1, and I1 points to
no data blocks, as the root directory is empty. The su-
perblock points to M , and it stores two additional coun-
ters: the next available inode number i (which is initial-
ized to 2 since the root is 1) and the next available block
number b (which is initialized to 3).

To add a file to the root directory, mknod changes the
disk state from Figure 2a to Figure 2b, as follows:

1. add an inode block I2 for the new file;
2. add a data block D for the root directory, which now

has one entry that maps the name of the new file to
its inode number 2;

3. add an inode block I ′1 for the updated root directory,
which points to its data block D;

4. add an inode mapping block M ′, which has two en-
tries: 1 7→ b5 and 2 7→ b3;

5. finally, update the superblock SB to point to the lat-
est inode mapping M ′.

Since the disk can reorder these updates, mknod must is-
sue disk flushes to be crash-safe. For example, if there
is no flush between the last two writes (steps 4 and 5),
the disk can reorder them; if the system crashes in be-
tween the reordered writes, the superblock will point to
garbage data in b6, resulting in corrupted YminLFS state.
For now, we assume a naïve but correct implementation
of mknod that inserts five flushes, one after each write. In
§2.4, we will use the Yggdrasil optimizer to remove the
first three flushes.

Consistency invariants. A consistency invariant for
a file system implementation is analogous to the well-
formedness invariant for its specification—it is a pred-
icate that determines whether a given disk state corre-
sponds to a valid file-system image. Yggdrasil uses con-
sistency invariants for two purposes: push-button verifi-
cation and run-time checking in the style of fsck [20, 30].
For verification, Yggdrasil checks that the invariant holds
for the initial file system state right after mkfs; in addi-
tion, it assumes the consistency invariant as part of the
precondition for each operation, and checks that the in-
variant holds as part of the postcondition. Once the im-
plementation is verified, Yggdrasil can optionally gen-
erate an fsck-like checker from these invariants (though
the checker cannot repair corrupted file systems). Such a
checker is useful even for a bug-free file system, as hard-
ware failures and bugs in other parts of the system can
damage the file system [40].

The YminLFS consistency invariant constrains three
components of the on-disk layout (Figure 2): the su-
perblock SB, the inode mapping block M , and the root
directory data block D. The superblock constraint re-
quires the next available inode number i to be greater
than 1, the next available block number b to be greater
than 2, and the pointer to M to be both positive and
smaller than b. The inode mapping constraint ensures

4

that M maps each inode number in range (0, i) to a block
number in range (0, b). Finally, the root directory con-
straint requires D to map file names to inode numbers
in range (0, i). These three constraints are all Yggdrasil
needs to verify YminLFS (see §2.3).

2.3 Verification

To verify that the YminLFS implementation (§2.2) sat-
isfies the FSSpec specification (§2.1), Yggdrasil uses the
Z3 solver [15] to prove a two-part crash refinement theo-
rem (§3). The first part of the theorem deals with crash-
free executions. It requires the implementation and spec-
ification to behave alike in the absence of crashes: if both
YminLFS and FSSpec start in equivalent and consistent
states, they end up in equivalent and consistent states.
The verifier defines equivalence using the specification’s
equivalent predicate (§2.1), and consistency using the
implementation’s consistency invariants (§2.2).

The second part of the theorem deals with crashing
executions. It requires the implementation to exhibit no
more crash states (disk states after a crash) than the spec-
ification: each possible state of the YminLFS implemen-
tation (including states caused by crashes and reordered
writes) must be equivalent to some crash state of FSSpec.

Counterexamples. If there is any bug in the imple-
mentation or consistency invariants, the verifier will gen-
erate a counterexample to help programmers understand
the bug. A counterexample consists of a concrete trace
of the implementation that violates the crash refinement
theorem. As an example, consider the potential missing
flush bug described in §2.2. If we remove the flush
between the last two writes in the implementation of
mknod, Yggdrasil outputs the following counterexample:

Pending writes
lfs.py:167 mknod write(new_imap_blkno, imap)

Synchronized writes
lfs.py:148 mknod write(new_blkno, new_ino)
lfs.py:154 mknod write(new_parentdata, parentdata)
lfs.py:160 mknod write(new_parentblkno, parentinode)
lfs.py:170 mknod write(SUPERBLOCK, sb)

Crash point
[..]
lfs.py:171 mknod flush()

The output describes the bug by showing the point at
which the system crashes and the list of writes pending
in the cache (along with their source code locations). In
this example, the write of the new inode mapping block
(step 4 above) is still pending, but the write to update the
superblock to point to that block (step 5) has reached the
disk, corrupting YminLFS’s state.

The visualization of “pending” and “synchronized”
writes in the counterexample is specific to the asyn-
chronous disk model; one can extend Yggdrasil with new
disk models and customized visualizations.

Our initial YminLFS implementation contained two
other bugs: one in the lookup logic and one in the data
layout. Neither of the bugs appeared during testing runs.
Both bugs were found by the verifier in a matter of sec-
onds, and we quickly localized and fixed them by exam-
ining the resulting counterexamples.

Proofs. If the Yggdrasil verifier finds no counterexam-
ples to the crash refinement theorem, then none exist, and
we have obtained a proof of correctness. In particular,
the crash refinement theorem holds for all disks with up
to 264 blocks, and for every trace of file system opera-
tions, regardless of its length. After we fixed the bugs in
our initial YminLFS implementation, the verifier proved
its correctness in under 30 seconds.

It is worth noting that the theorem holds if the file sys-
tem is the only user of the disk. For instance, it does not
hold if an adversary corrupted the file system image by
directly modifying the disk. To address this issue, one
can run fsck generated by Yggdrasil, which guarantees
to detect any such inconsistencies.

2.4 Optimizations and compilation

As described in §2.2, YminLFS’s mknod implementation
uses five disk flushes. Yggdrasil provides a greedy opti-
mizer that tries to remove every disk flush and re-verify
the code. Running the optimizer on the mknod code re-
moves three out of the five flushes within three minutes,
while still guaranteeing correctness.

The optimized and verified YminLFS implementation,
which is in Python, is executable but slow. Yggdrasil
invokes the Cython compiler [3] to generate C code from
Python for better performance. It also provides a small
bridge to connect the generated C code to FUSE [17].
The result is a single-threaded user-space file system.

2.5 Summary

We have demonstrated how to specify, implement, de-
bug, verify, optimize, and execute the YminLFS file sys-
tem using Yggdrasil. Compared to previous file sys-
tem verification work, push-button verification eases the
proof burden and enables automated features such as vi-
sualizing bugs and optimizing code.

Since there is no need to manually prove or annotate
implementation code when using Yggdrasil, the verifi-
cation effort is spent mainly on writing the specification
and coming up with consistency invariants about the on-
disk data format. We find the counterexample visualizer
useful for finding bugs in these two parts.

The trusted computing base (TCB) includes the file
system specification, Yggdrasil’s verifier, visualizer, and
compiler (but not the optimizer), their dependencies (i.e.,
the Z3 solver, Python, and gcc), as well as FUSE and the
Linux kernel. See §6 for discussion on limitations.

5

3 The Yggdrasil architecture
In Yggdrasil, the core notion of correctness is crash re-
finement. This section gives a formal definition of crash
refinement, and describes how Yggdrasil’s components
use this definition to support verification, counterexam-
ple visualization, and optimization.

3.1 Reasoning about systems with crashes

In Yggdrasil, programmers write both specifications and
implementations (referred to as “systems” in this section)
as state machines: each system comprises a state and a
set of operations that transition the state. A transition
can occur only if the system is in a consistent state, as
determined by its consistency invariant I. This invariant
is a predicate over the system’s state, indicating whether
it is consistent or corrupted; see §2.2 for an example.

Consider a specification F0 and an implementation
F1. Our goal is to show that F1 is correct with respect
to F0. Since both systems are state machines, a straw-
man definition of correctness is that they transition in
lock step (i.e., bisimulation): starting from equivalent
consistent states, if the same operation is invoked on
both systems, they will transition to equivalent consistent
states (where equivalence between states is defined by a
system-specific predicate). However, this bisimulation-
based definition is too strong for systems that interact
with external storage, as it does not account for non-
determinism from disk reorderings, crashes, or recovery.

To address this shortcoming, we introduce crash re-
finement as a new definition of correctness. At a high
level, crash refinement says that F1 is correct with re-
spect to F0 if, starting from equivalent consistent states
and invoking the same operation on both systems, any
state produced by F1 is equivalent to some state produced
by F0. To formalize this intuition, we define the behav-
ior of a system in the presence of crashes, formalize crash
refinement for individual operations, and extend the re-
sulting definition to entire systems.

System operations. We model the behavior of a sys-
tem operation with a function f that takes three inputs:

• its current state s;
• an external input x, such as data to write; and
• a crash schedule b, which is a set of boolean values

denoting the occurrence of crash events.
Applying f to these inputs, written as f(s,x, b), pro-
duces the next state of the system.

As a concrete example, consider a single disk write
operation that writes value v to disk address a. The ex-
ternal input to the write operation’s function fw is the
pair (a, v). The state s is the disk content before the
write; s(a) gives the old value at the address a. The
asynchronous disk model in Yggdrasil generates a pair of
boolean values (on, sync) as the crash schedule. The on

value indicates whether the write operation completed
successfully by storing its data into the volatile cache.
The sync value indicates whether the write’s effect has
been synchronized from the volatile cache to stable stor-
age. After executing the write operation, the disk is up-
dated to contain v at the address a only if both on and
sync are true, and left unchanged otherwise (e.g., the
system crashed before completing the write, or before
synchronizing it to stable storage):

fw(s,x, b) = s[a 7→ if on ∧ sync then v else s(a)],

where x = (a, v) and b = (on, sync).

Crash refinement. To define crash refinement for a
given schedule, we start from a special case where write
operations always complete and their effects are synchro-
nized to disk. That is, the crash schedule is the constant
vector true . Let s0 ∼ s1 denote that s0 and s1 are equiv-
alent states according to a user-defined equivalence rela-
tion (as in §2.1). We write s0 ∼I0,I1 s1 to say that s0
and s1 are equivalent and consistent according to their
respective system invariants I0 and I1:

s0 ∼I0,I1 s1 , I0(s0) ∧ I1(s1) ∧ s0 ∼ s1.

With a crash-free schedule true , two functions f0 and f1
are equivalent if they produce equivalent and consistent
output states when given the same external input x, as
well as equivalent and consistent starting states:

Definition 1 (Crash-free equivalence). Given two func-
tions f0 and f1 with their system consistency invariants
I0 and I1, respectively, we say f0 and f1 are crash-free
equivalent if the following holds:

∀s0, s1,x. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, true) and s′1 = f1(s1,x, true).

Next, we allow for the possibility of crashes. We say
that f1 is correct with respect to f0 if, for any crash
schedule, the state produced by f1 with that schedule is
equivalent to a state produced by f0 with some schedule:

Definition 2 (Crash refinement without recovery). Func-
tion f1 is a crash refinement (without recovery) of f0 if
(1) f0 and f1 are crash-free equivalent and (2) the fol-
lowing holds:

∀s0, s1,x, b1. ∃b0. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, b0) and s′1 = f1(s1,x, b1).

Finally, we consider the possibility that the system
may run a recovery function upon reboot. A recovery
function r is a system operation (as defined above) that
takes no external input (as it is executed when the system
starts). It should also be idempotent: even if the system
crashes during recovery and re-runs the recovery func-
tion many times, the resulting state should be the same
once the recovery is complete.

6

Definition 3 (Recovery idempotence). A recovery func-
tion r is idempotent if the following holds:

∀s, b. r(s, true) = r(r(s, b), true).

Note that this definition accounts for multiple crash-
reboot cycles during recovery, by repeated application
of the idempotence definition on each intermediate crash
state r(s, b), r(r(s, b), b′), . . . , where b, b′, . . . are the
schedules for each crash during recovery.

Definition 4 (Crash refinement with recovery). Given
two functions f0 and f1, their system consistency invari-
ants I0 and I1, respectively, and a recovery function r,
f1 with r is a crash refinement of f0 if (1) f0 and f1
are crash-free equivalent; (2) r is idempotent; and (3) the
following holds:

∀s0, s1,x, b1. ∃b0. (s0 ∼I0,I1 s1)⇒ (s′0 ∼I0,I1 s′1)

where s′0 = f0(s0,x, b0) and s′1 = r(f1(s1,x, b1), true).

Furthermore, systems may run background operations
that do not change the externally visible state of a sys-
tem (i.e., no-ops), such as garbage collection.

Definition 5 (No-op). Function f with a recovery func-
tion r is a no-op if (1) r is idempotent, and (2) the fol-
lowing holds:

∀s0, s1,x, b1. (s0 ∼I0,I1 s1)⇒ (s0 ∼I0,I1 s′1)

where s′1 = r(f(s1,x, b1), true).

With per-function crash refinement and no-ops, we can
now define crash refinement for entire systems.

Definition 6 (System crash refinement). Given two sys-
tems F0 and F1, and a recovery function r, F1 is a crash
refinement of F0 if every function in F1 with r is either a
crash refinement of the corresponding function in F0 or
a no-op.

The rest of this section will describe Yggdrasil’s compo-
nents based on the definition of crash refinement.

3.2 The verifier

Given two file systems, F0 and F1, Yggdrasil’s verifier
checks that F1 is a crash refinement of F0 according to
Definition 6. To do so, the verifier performs symbolic
execution [6, 24] for each operation fi ∈ Fi to obtain
an SMT encoding of the operation’s output, fi(si,x, bi),
when applied to a symbolic input x (represented as a
bitvector), symbolic disk state si (represented as an un-
interpreted function over bitvectors), and symbolic crash
schedule bi (represented as booleans). It then invokes
the Z3 solver to check the validity of either the no-op
identity (Definition 5) if f1 is a no-op, or else the per-
function crash refinement formula (Definition 4) for the
corresponding functions f0 ∈ F0 and f1 ∈ F1.

To capture all execution paths in the SMT encoding of
fi(si,x, bi), the verifier adopts a “self-finitizing” sym-
bolic execution scheme [49], which simply unrolls loops
and recursion without bounding the depth. Since this
scheme will fail to terminate on non-finite code, the ver-
ifier requires file systems to be implemented in a finite
way: for instance, loops must be bounded [50]. In our
experience (further discussed in §4), the finiteness re-
quirement does not add much programming burden.

To prove the validity of the per-function crash refine-
ment formula, the verifier uses Z3 to check if the for-
mula’s negation is unsatisfiable. If so, the result is a
proof that f1 is a crash refinement of f0. Otherwise, Z3
produces a model of the formula’s negation, which rep-
resents a concrete counterexample to crash refinement:
disk states s0 and s1, an input x, and a crash schedule
b1, such that s0 ∼I0,I1

s1 but there is no crash schedule
b0 that satisfies f0(s0,x, b0) ∼I0,I1

f1(s1,x, b1).
Checking the satisfiability of the negated crash refine-

ment formula in Definition 4 requires reasoning about
quantifiers. In general, such queries are undecidable. In
our case, the problem is decidable because the quantifiers
range over finite domains, and the formula is expressed
in a decidable combination of decidable theories (i.e.,
equality with uninterpreted functions and fixed-width
bitvectors) [51]. Moreover, Z3 can solve this problem in
practice because the crash schedule b0, which is a set of
boolean variables, is the only universally quantified vari-
able in the negated formula. As many file system specifi-
cations have simple semantics, the crash schedule b0 has
few boolean variables—often only one (e.g., the transac-
tion in §2.1)—which makes the reasoning efficient.

The verifier’s symbolic execution engine supports all
regular Python code with concrete (i.e., non-symbolic)
values. For symbolic values, it supports booleans, fixed-
width integers, maps, and lists of concrete length, as well
as regular control flow including conditionals and loops,
but no exceptions or coroutines. It does not support sym-
bolic execution into C library code.

3.3 The counterexample visualizer

To make counterexamples to validity easier to under-
stand, Yggdrasil provides a visualizer for the asyn-
chronous disk model. Given a counterexample model of
the formula in Definition 4, the visualizer produces con-
crete disk event traces (e.g., see §2.3) as follows. First,
it uses the crash schedule b1 to identify the boolean vari-
able on that indicates where the system crashed, and
relates that location to the implementation source code
with a stack trace. Second, it evaluates the boolean sync
variables that indicate whether a write is synchronized
to disk, and prints out the pending writes with their cor-
responding source locations to help identify unintended
reorderings. Yggdrasil also allows programmers to sup-

7

ply their own plugin visualizer for data structures specific
to their file system images. We found this facility useful
when developing YminLFS and Yxv6.

3.4 The optimizer

The Yggdrasil optimizer improves the run-time perfor-
mance of implementation code. Yggdrasil treats the op-
timizer as untrusted and re-verifies the optimized code it
generates. This simple design, made possible by push-
button verification, allows programmers to plug in cus-
tom optimizations without the burden of supplying a cor-
rectness proof. We provide one built-in optimization that
greedily removes disk flush operations (see §2.4), imple-
mented by rewriting the Python abstract syntax tree.

4 The Yxv6 file system
The section describes the design, implementation, and
verification of the Yxv6 journaling file system. At a
high level, verifying the correctness of Yxv6 requires
Yggdrasil to obtain an SMT encoding of both the specifi-
cation and implementation through symbolic execution,
and to invoke an SMT solver to prove the crash refine-
ment theorem. A simple approach, used by YminLFS in
§2, is to directly prove crash refinement between the en-
tire file system specification and implementation. How-
ever, the complexity of Yxv6 makes such a proof in-
tractable for state-of-the-art SMT solvers. To address this
issue, Yxv6 employs a modular design enabled by crash
refinement to scale up SMT reasoning.

4.1 Design overview

Yxv6 uses crash refinement to achieve scalable SMT rea-
soning in three steps. First, to reduce the size of SMT
encodings, Yxv6 stacks five layers of abstraction, each
consisting of a specification and implementation, starting
with an asynchronous disk specification (§4.2). We use
Yggdrasil to prove crash refinement theorems for each
layer, showing that each correctly implements its specifi-
cation. Upper layers then use the specifications of lower
layers, rather than their implementations, in order to ac-
celerate verification. This layered approach effectively
bounds the reasoning to a single layer at a time.

Second, many file system operations touch only a
small part of the disk. To allow the SMT solver to ex-
ploit this locality, Yxv6 explicitly uses multiple separate
disks rather than one. For example, by storing the free
bitmap on a separate disk, the SMT solver can easily
infer that updating it does not affect the rest of the file
system. We then prove crash refinement from this multi-
disk system to a more space-efficient file system that uses
only a single disk (§4.3). The result of these first two
steps is Yxv6+sync, a synchronous file system that com-
mits a transaction for each system call (by forcing the log
to disk), similar to xv6 [14] and FSCQ [7].

regular files, symbolic
links, and directories

Yxv6 files

inodes

Yxv6 inodes

virtual trans-
actional disk

block pointer

transactional disk

write-ahead logging

asynchronous disk

block device
Axiom 1

Theorem 2

Theorem 3

Theorem 4

Theorem 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 3: The stack of layers of Yxv6. Within each layer, a
shaded box represents the specification; a (white) box repre-
sents the implementation; and the implementation is a crash
refinement of its specification, denoted using an arrow. Each
implementation (except for the lowest layer) builds on top of a
specification from the layer below, denoted using a circle.

Finally, for better run-time performance, we imple-
ment an optimized variant of Yxv6+sync that groups
multiple system calls into one transaction [19] and com-
mits only when the log is full or upon fsync. We prove
the resulting file system, called Yxv6+group_commit, is
a crash refinement of Yxv6+sync with a more relaxed
crash consistency model (§4.4).

4.2 Stacking layers of abstraction

Figure 3 shows the five abstraction layers of Yxv6. Each
layer consists of a specification and an implementation
that is written using a lower-level specification. We de-
scribe each of these layers in turn.

Layer 1: Asynchronous disk. The lowest layer of the
stack is a specification of an asynchronous disk. This
specification comprises the asynchronous disk model we
used in §2.2 to implement YminLFS. Since the imple-
mentation of a physical block device is opaque, we as-
sume the specification correctly models the block de-
vice (i.e., the specification is more conservative and al-
lows more behavior than real hardware), as follows:

Axiom 1. A block device is a crash refinement of the
asynchronous disk specification.

Layer 2: Transactional disk. The next layer intro-
duces the abstraction of a transactional disk, which man-

8

ages multiple separate data disks, and offers the follow-
ing operations:

• d.begin_tx() starts a transaction;
• d.commit_tx() commits a transaction;
• d.write_tx(j, a, v) adds to the current transaction a

write of value v to address a on disk j; and
• d.read(j, a) returns the value at address a on disk j.

The specification says that operations executed within
the same transaction are atomic (i.e., all-or-nothing) and
sequential (i.e., transactions cannot be reordered).

The implementation uses the standard write-ahead
logging technique [19, 31]. It uses one asynchronous
disk (from layer 1) for the log, and a set of asynchronous
disks for data. Using a single transactional disk to man-
age multiple data disks allows higher layers to separate
writes within a transaction (e.g., updates to data and
inode blocks will not interfere), which helps scale SMT
reasoning; §4.3 refines the multiple disks to one.

The implementation is parameterized by the transac-
tion size limit k (i.e., the maximum number of writes in
one transaction). The log disk uses a fixed number of
blocks, determined by k, as a header to store log entry
addresses, and the remaining blocks to store log entry
data. The first entry in the first header block is a counter
of log entries; the consistency invariant for the transac-
tional disk layer says that this counter is always zero after
recovery. The Yxv6+sync file system sets k = 10, while
Yxv6+group_commit sets k = 511. For each of these
settings, we prove the following theorem:

Theorem 2. The write-ahead logging implementation is
a crash refinement of the transactional disk specification.

Layer 3: Virtual transactional disk. The specifica-
tion of the virtual transactional disk is similar to that
of the transactional disk, but instead uses 64-bit virtual
disk addresses [22]. Each virtual address can be mapped
to a physical disk address or unmapped later; reads and
writes are valid for mapped addresses only. We will use
this abstraction to implement inodes in the upper layer.

The virtual transactional disk implementation uses the
standard block pointers approach. It uses one transac-
tional disk managing at least three data disks: one to
store the free block bitmap, another to store direct block
pointers, and the third to store both data and singly in-
direct block pointers (higher layers will add additional
disks). The free block bitmap disk stores only one bit in
each of its blocks, which simplifies SMT reasoning but
wastes disk space; §4.3 will refine it to a more space-
efficient version.

The implementation relies on two consistency invari-
ants: (1) the mapping from virtual disk addresses to
physical disk addresses is injective (i.e., each physical
address is mapped at most once), and (2) if a virtual disk
address is mapped to physical address a, the ath bit in

the block bitmap must be marked as used. We use these
invariants to prove the following theorem:

Theorem 3. The block pointer implementation is a crash
refinement of the virtual transactional disk specification.

Layer 4: Inodes. The fourth layer introduces the ab-
straction of inodes. Each inode is uniquely identified us-
ing a 32-bit inode number. The specification maps an
inode number to 232 blocks, and to a set of metadata such
as size, mtime, and mode.

The implementation is straightforward thanks to the
virtual transactional disk specification. It simply splits
the 64-bit virtual disk address space into 232 ranges,
and each inode takes one range, which has 232 “virtual”
blocks, similar to NVMFS/DFS [22]. Inode metadata re-
sides on a separate disk managed by the virtual transac-
tional disk (which now has four data disks). There are no
consistency invariants in this layer. We prove the follow-
ing theorem:

Theorem 4. The Yxv6 inode implementation is a crash
refinement of the inode specification.

Layer 5: File system. The top layer of the file system
is an extended version of FSSpec given in §2, with regular
files, directories, and symbolic links.

The implementation builds on top of the inode speci-
fication, using a separate inode bitmap disk and another
for orphan inodes. Both are managed by the virtual trans-
actional disk (which now has six data disks plus the log
disk, giving a total of seven disks). There are two consis-
tency invariants: (1) if an inode is not marked as used in
the inode bitmap disk, its size must be zero in the meta-
data; and (2) if an inode has n blocks, no “virtual” block
larger than n is mapped. Using these invariants, we prove
the final crash refinement theorem:

Theorem 5. The Yxv6 implementation of files is a crash
refinement of the specification of regular files, symbolic
links, and directories.

Finitization. The Yggdrasil verifier requires Yxv6 op-
erations to be finite, as mentioned in §3.2. Most file sys-
tem operations satisfy this requirement, as they use only
a small number of disk reads and writes. For example,
moving a file involves updating only the source and des-
tination directories. However, there are two exceptions.

First, search-related procedures, such as finding a free
bit in a bitmap, may need to read many blocks. We
choose not to verify the bit-finding algorithm, but in-
stead adopt the idea of validation [38, 46, 48] to imple-
ment such search algorithms. The validator, which we
do verify, simply checks that an index returned by the
search is indeed marked free in the bitmap and if not,
fails the operation with an error code. We use similar

9

log
disk

log
partition

file data
disk

file data
partition

orphan inodes
disk

orphan inodes
partition

block bitmap
disk

packed block
bitmap disk

block bitmap
partition

inode bitmap
disk

packed inode
bitmap disk

inode bitmap
parition

inode metadata
disk

packed inodes
disk

inodes
partition

direct block
pointers disk

disk

Figure 4: The refinement of disk layout of the Yxv6 file system,
from multiple disks to a single disk. The arrows A← B denote
that B is a crash refinement of A.

strategies for directory entry lookup. This approach al-
lows us to treat search procedures as a black box, ab-
solving the SMT solver from the need to reason about
the many paths through the algorithm.

The second case is unlinking a file, as freeing all its
data blocks needs to write potentially many blocks. To
finitize this operation, our implementation simply moves
the inode of the file into a special orphan inodes disk,
which is a finite operation, and relies on a separate
garbage collector to reclaim the data blocks at a later
time. We further prove that reclamation is a no-op (as
per the definition in §3.1), as freeing a block referenced
by the orphan inodes disk does not affect the externally
visible state of the file system. We will summarize the
trade-offs of validation in §4.5.

4.3 Refining disk layouts

Theorem 5 gives a file system that runs on seven disks:
the write-ahead log, the file data, the block and inode
bitmaps for managing free space, the inode metadata, the
direct block pointers, and the orphan inodes. Using sep-
arate disks scales SMT reasoning, but it has two down-
sides. First, the two bitmaps use only one bit per block
and the inode metadata disk stores one inode per block,
wasting space. Second, requiring seven disks makes the
file system difficult to use. We now prove with crash re-
finement that it is correct to pack these disks into one
disk (Figure 4) similar to the xv6 file system [14].

Intuitively, it is correct to pack multiple blocks that
store data sparsely into one with a dense representation,
because the packed disk has the same or fewer possible
disk states. For instance, bitmap disks used in §4.2 store
one bit per block; the n-th bit of the bitmap is stored in

the lowest bit of block n. On the other hand, a packed
bitmap disk stores 4KB × 8 = 215 bits per block, and
the n-th bit is stored in bit n mod 215 of block n/215.
Clearly, using the packed bitmap is a crash refinement of
the sparse one. The same holds for using packed inodes.
Similarly, a single disk with multiple non-overlapping
partitions exhibits fewer states than multiple disks; for
example, a flush on a single disk will flush all the parti-
tions, but not for multiple disks. Combining these pack-
ing steps, we prove the following theorem:

Theorem 6. The Yxv6 implementation using seven non-
overlapping partitions of one asynchronous disk, with
packed bitmaps and inodes, is a crash refinement of that
using seven asynchronous disks.

4.4 Refining crash consistency models

Theorem 6 gives a synchronous file system that com-
mits a transaction for each system call. This file sys-
tem, which we call Yxv6+sync, incurs a slowdown as
it flushes the disk frequently (see §8 for performance
evaluation). The Yxv6+group_commit file system im-
plements a more relaxed crash consistency model [5, 37].
Unlike Yxv6+sync, its write-ahead logging implementa-
tion groups multiple transactions together [19].

Intuitively, doing a single combined transaction pro-
duces fewer possible disk states compared to two sepa-
rate transactions, as in the latter scheme the system can
crash in between the two and expose the intermediate
state. We prove the following theorem:

Theorem 7. Yxv6+group_commit is a crash refinement
of Yxv6+sync.

4.5 Summary of design trade-offs

Unlike conventional journaling file systems, the first
Yxv6 design in §4.2 uses multiple disks. To decide the
number of disks, we adopt a simple guideline: whenever
a part of the disk is logically separate from the rest of the
file system, such as the log or the free bitmap, we assign
a separate disk for that part. In our experience, this is
effective in scaling up SMT reasoning.

Yxv6’s final on-disk layout closely resembles that of
the xv6 and FSCQ file systems. One notable difference
is that Yxv6 uses an orphan inodes partition to manage
files that are still open but have been unlinked, similarly
to the orphan inode list [21] in ext3 and ext4. This de-
sign ensures correct atomicity behavior of unlink and
rename, especially when running with FUSE, which xv6
and FSCQ do not guarantee.

Another difference to FSCQ is that Yxv6 uses valida-
tion instead of verification in managing free blocks and
inodes. Although the resulting allocator is safe, it does
not guarantee that block or inode allocation will succeed
when there is enough space, treating such failures as a
quality-of-service issue.

10

5 Beyond file systems
Although we designed Yggdrasil for writing verified file
systems, the idea of crash refinement generalizes to ap-
plications that use disks in other ways. This section de-
scribes two examples: Ycp, a file copy utility; and Ylog,
a persistent log data structure.

The Ycp file copy utility. Like the Unix cp utility, Ycp
copies the contents of one file to another. Unlike cp, it
has a formal specification: if the copy operation suc-
ceeds, the file system is updated so that the target file
contains the same data as the source file; if it fails due to
a system crash or an invalid target (e.g., a directory or a
symbolic link), the file system is unchanged.

The implementation of Ycp uses the Yxv6 file system
specification (Figure 3). It follows a common atomicity
pattern: (1) create a temporary file, (2) write the source
data to it, and (3) rename it to atomically create the target
file. There is no consistency invariant as Ycp uses file
system operations and is independent of disk layout.

We verify that the implementation of Ycp is a crash re-
finement of its specification using Yggdrasil. This shows
that Yggdrasil and Yxv6’s specification are useful for
reasoning about application-level correctness.

The Ylog persistent log. Ylog is a verified implemen-
tation of the persistent log from the Arrakis operating
system [36]. The Arrakis log is designed to provide an
efficient storage API with strong atomicity and persis-
tence guarantees. The core logging operation is a multi-
block append, which extends an on-disk log with entries
that can span multiple blocks. This append operation
must appear to be both atomic and immediately persis-
tent, even in the presence of crashes.

The Arrakis persistent log was originally designed to
run on top of an LSI Logic MegaRAID SAS-3 3108
RAID controller with a battery-backed cache. We there-
fore chose to implement Ylog on top of a synchronous
disk model, which does not reorder writes and matches
the behavior of the RAID controller. Ylog uses the
same on-disk layout as Arrakis: the first block (i.e., su-
perblock) contains metadata, such as the number of en-
tries and a pointer to the end of the log, followed by
blocks that contain the data of each entry.

When comparing Ylog’s implementation with that of
Arrakis, we discovered two bugs in the Arrakis persistent
log: its crash recovery logic was not idempotent, and the
log could end up with garbage data if the system crashed
again during recovery. The bugs were reported to and
confirmed by the Arrakis developers.

6 Discussion
This section discusses the limitations of Yggdrasil, as
well as our experience using and designing the toolkit.

component specification implementation consistency inv

Yxv6 250 1,500 5
YminLFS 25 150 5
Ycp 15 45 0
Ylog 35 60 0
infrastructure – 1,500 –
FUSE stub – 250 –

Figure 5: Lines of code for the Yggdrasil toolkit and storage
systems built using it, excluding blank lines and comments.

Limitations. Yggdrasil reasons about single-threaded
code, so file systems written using Yggdrasil do not sup-
port concurrency. Cython [3], Yggdrasil’s Python-to-C
compiler, is unverified, although we have not yet encoun-
tered any bugs in the development.

Yggdrasil relies on SMT solvers for automated rea-
soning, and is limited to first-order logic. It is less ex-
pressive than interactive theorem provers such as Coq
or Isabelle, although our experience shows that it is suf-
ficient for writing and verifying file systems like Yxv6
based on crash refinement.

Since the Z3 solver is at the core of Yggdrasil, its cor-
rectness is critical. To understand this risk, we ran the
Yxv6 verification using every buildable snapshot of the
Z3 Git repository over the past three years, a total of
1,417 versions. We also used two other SMT solvers,
Boolector [32] and MathSAT 5 [9], for cross-checking.
We did not observe any inconsistent results.

The Yxv6 file system lacks several modern file system
features, such as extents and delayed allocation in ext4.
Compared to hand-written file system checkers, its fsck

tool is generated by Yggdrasil and guaranteed to detect
any violations of consistency invariants, but it cannot re-
pair corrupted file systems.

Lessons learned. Bitvector operations and reasoning
about non-determinism (e.g., crashes) are common in
file system implementations. These characteristics moti-
vated us to formulate file system verification as an SMT
problem, exploiting the fully automated decision pro-
cedures for the theories of bitvectors and uninterpreted
functions. In addition, using SMT enables Yggdrasil
to produce and visualize counterexamples; we find this
ability useful for tracking subtle file system bugs during
development, especially corner cases such as overflows
and missing flushes [27].

In earlier development of Yggdrasil, we struggled to
find a disk representation for scalable SMT reasoning.
We explored several approaches, such as a lazy list of
symbolic blocks (e.g., EXE [53]) and the theory of ar-
rays, all resulting in a verification bottleneck.

Yggdrasil represents a disk using uninterpreted func-
tions that map a block address and an in-block offset
to a 64-bit integer. This two-level map helped to scale
up verification. Mapping to 64-bit integers also allowed

11

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 6: Performance of file systems on an SSD, in sec-
onds (log scale; lower is better).

0.001

0.01

0.1

1

10

100

1000

Make Bash Make yxv6 Mailbench Largefile Smallfile

R
un

ni
ng

tim
e

in
se

co
nd

s

fscq
ext4+sync
yxv6+sync
yxv6+group_commit
ext4+default

Figure 7: Performance of file systems on a RAM disk, in sec-
onds (log scale; lower is better).

Yggdrasil to generate efficient C code. The idea of sep-
arating logical and physical data representations using
crash refinement further reduced the verification time by
orders of magnitude. As we will show in §8, verifying
Yxv6+sync’s theorems took less than a minute, thanks to
Z3’s efficient decision procedures, whereas Coq took 11
hours to check the proofs of FSCQ [7] (which has similar
features to Yxv6+sync).

Crash refinement requires programmers to design a
system as a state machine and implement each operation
in a finite way. File systems fit well into this paradigm.
We have used crash refinement in several contexts: to
stack layers of abstraction, to pack multiple blocks or
disks, and to relax crash consistency models. Crash re-
finement does not require advanced knowledge of pro-
gram logics (e.g., separation logic [41] in FSCQ), and is
amenable to automated SMT reasoning.

7 Implementation
Figure 5 lists the code size of the file systems and other
storage applications built using Yggdrasil, the common
infrastructure code, and the FUSE boilerplate. In total,
they consist of about 4,000 lines of Python code.

8 Evaluation
This section uses Yxv6 as a representative example to
evaluate file systems built using Yggdrasil. We aim to
answer the following questions:

• Does Yxv6 provide end-to-end correctness?
• What is the run-time performance?
• What is the verification performance?

Unless otherwise noted, all experiments were conducted
on a 4.0 GHz quad-core Intel i7-4790K CPU running
Linux 4.4.0.

Correctness. We tested the correctness of Yxv6 as
follows. First, we ran it on existing benchmarks.
Both Yxv6+sync and Yxv6+group_commit passed the
fsstress tests from the Linux Test Project [26]; they
also passed the SibylFS POSIX conformance tests [42],
except for incomplete features such as hard links or ex-

tended attributes. Second, we have been using Yxv6 to
self-host Yggdrasil’s development since early March, in-
cluding the writing of this paper; our experience is that
it is reliable for daily use. Third, we applied the disk
block enumerator from the Ferrite toolkit [5] (similar to
the Block Order Breaker [37]) to cross-check that the file
system state was consistent after a crash and recovery.

To test the correctness of Yxv6’s fsck, we manually
corrupted file system images by overwriting them with
random bytes; Yxv6’s fsck was able to detect corruption
in all these cases.

Run-time performance. To understand the run-time
performance of Yxv6, we ran a set of five benchmarks
similar to those used in FSCQ [7]: compiling the source
code of bash and Yxv6, running a mail server from the
sv6 operating system [10], and the LFS benchmark [44].

We compare the two Yxv6 variants against the verified
file system FSCQ and the ext4 file system in two con-
figurations: its default configuration (i.e., data=ordered),
and with data=journal+sync options, which together are
similar to Yxv6+sync. Although Yxv6’s implementation
is closest to xv6, we excluded xv6’s performance num-
bers as it crashed frequently on three benchmarks and did
not pass the fsstress tests.

Figure 6 shows the on-disk performance with all the
file systems running on a Samsung 850 PRO SSD. The
y-axis shows total running time in seconds (log scale).
We see that Yxv6+sync performs similarly to FSCQ and
to ext4’s slower configuration. Yxv6+group_commit,
which groups several operations into a single transaction,
outperforms those file systems by 3–150× and is on av-
erage within 10× of ext4’s default configuration.

To understand the CPU overhead, we repeated the ex-
periments using a RAM disk, as shown in Figure 7. The
two variants of Yxv6 have similar performance numbers.
They both outperform FSCQ, and are close in perfor-
mance to ext4 (except for the largefile benchmark). We
believe the reason is that Yxv6 benefits from Yggdrasil’s
Python-to-C compiler, while FSCQ’s performance is af-
fected by its use of Haskell code extracted from Coq.

12

Verification performance. As we mentioned in §6, the
total verification time for Yxv6+sync is under a minute
on a single core. It achieved this verification perfor-
mance due to Z3’s efficient SMT solving and the use of
crash refinement in the file system.

Verifying Yxv6+group_commit took a longer time,
because it is parameterized to use larger transactions (see
§4.2). It finished within 1.6 hours using 24 cores (Intel
Xeon 2.2 GHz), approximately 36 hours on a single core.

9 Related work
Verified file system implementations. Developers
looking to build and verify file systems have primarily
turned to interactive theorem provers such as Coq [11]
and Isabelle [33]. Our approach is most similar to
FSCQ [7], a verified crash-safe file system developed in
Coq. Their proof shows that after reboot, FSCQ’s recov-
ery routines will correctly recover the file system state
without data loss. These theorems are stated in crash
Hoare logic, which extends Hoare logic with support for
crash conditions and recovery procedures. Our approach
also bears similarities to Flashix [16, 47], another veri-
fied crash-safe file system. The Flashix proof consists of
several refinements from the POSIX specification layer
down to an implementation which can be extracted to
Scala. These refinements are proved in the KIV interac-
tive theorem prover in terms of abstract state machines.

Compared to these examples, Yggdrasil’s push-
button verification substantially lowers the proof burden.
Yggdrasil can verify the Yxv6 implementation given
only the specifications and five consistency invariants.
This ease of verification, together with richer debugging
support, also helped us implement several optimizations
in Yxv6 that make its performance 3–150× faster than
FSCQ and within 10× of ext4.

COGENT [2] takes a different approach to building
verified file systems, defining a new restricted language
together with a certified compiler to C code. The CO-
GENT language rules out several common sources of er-
rors, such as memory safety and memory leaks, reduc-
ing the verification proof burden. We believe Yggdrasil
and COGENT to be complimentary: on one hand, CO-
GENT provides certified extraction to C code which could
replace Yggdrasil’s unverified extraction from Python;
on the other hand, Yggdrasil’s crash refinement strategy
could help COGENT to produce more automated proofs.

File system specifications and crash consistency.
Several projects have developed formal specifications
of file systems. SibylFS [42] is an effort to formalize
POSIX interfaces and test implementation conformance.
But because POSIX file system interfaces underspecify
allowed crash behavior, so does the SibylFS formaliza-
tion. Commuter [10] formalizes the commutativity of

POSIX interface calls to study scalability, but as with
SibylFS, the formalization does not consider crashes.

Modern file systems adopt various crash recovery
strategies, including write-ahead logging (or journal-
ing) [19, 31], log-structured file systems [44], copy-on-
write (or shadowing) [4, 43], and soft updates [18, 29].
This diversity complicates reasoning about application-
level crash safety. Pillai et al. [37] and Zheng et al.
[55] surveyed the crash safety of real-world applications,
finding many crash-safety bugs despite extensive engi-
neering effort to tolerate and recover from crashes. Born-
holt et al. [5] formalized the crash guarantees of modern
file systems as crash-consistency models, to help applica-
tion writers provide crash safety. A formally verified file
system can provide these models as an artifact of the ver-
ification process. Yggdrasil’s crash refinement strategy
helps to abstract low-level implementation details out of
these application-facing models.

Bug-finding tools. Rather than building a new veri-
fied file system, several existing projects focus on find-
ing bugs in existing file systems. FiSC [54] and eX-
plode [52] use model checking to find consistency bugs.
ELEVEN82 [25] is a bug-finding tool for “recoverabil-
ity bugs,” where a system can crash in such a way that
even after recovery, the file system is left in a state not
reachable by any crash-free execution. Yggdrasil is com-
plementary to these tools: ELEVEN82’s automata-based
bug detection allows it to explore complex optimizations,
while Yggdrasil provides proofs not only of crash safety
but of functional correctness.

10 Conclusion

Yggdrasil presents a new approach for building file sys-
tems with the aid of push-button verification. It guar-
antees correctness through a definition of file system
crash refinement that is amenable to efficient SMT solv-
ing. It introduces several techniques to scale up auto-
mated verification, including the stack of abstractions
and the separation of data representations. We believe
that this is a promising direction since it provides a
strong correctness guarantee with a low proof burden.
All of Yggdrasil’s source code is publicly available at
http://locore.cs.washington.edu/yggdrasil/.

Acknowledgments

We thank Helga Gudmundsdottir, Niel Lebeck, Hank
Levy, Haohui Mai, Qiao Zhang, the anonymous review-
ers, and our shepherd, Petros Maniatis, for their feed-
back. This work was supported in part by DARPA un-
der contract FA8750-16-2-0032 and by a gift from the
VMware University Research Fund.

13

http://locore.cs.washington.edu/yggdrasil/

References
[1] R. Alagappan, V. Chidambaram, T. S. Pillai, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Be-
yond storage APIs: Provable semantics for storage
stacks. In Proceedings of the 15th Workshop on Hot
Topics in Operating Systems (HotOS), Kartause It-
tingen, Switzerland, May 2015.

[2] S. Amani, A. Hixon, Z. Chen, C. Rizkallah,
P. Chubb, L. O’Connor, J. Beeren, Y. Nagashima,
J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray,
G. Klein, and G. Heiser. COGENT: Verifying high-
assurance file system implementations. In Proceed-
ings of the 21st International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 175–188, At-
lanta, GA, Apr. 2016.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Sel-
jebotn, and K. Smith. Cython: The best of both
worlds. Computing in Science Engineering, 13(2):
31–39, Mar.–Apr. 2011. http://cython.org/.

[4] J. Bonwick. ZFS: The last word in filesys-
tems, Oct. 2005. https://blogs.oracle.com/
bonwick/entry/zfs_the_last_word_in.

[5] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy,
E. Torlak, and X. Wang. Specifying and check-
ing file system crash-consistency models. In Pro-
ceedings of the 21st International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 83–98,
Atlanta, GA, Apr. 2016.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceed-
ings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI), pages 209–
224, San Diego, CA, Dec. 2008.

[7] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using Crash Hoare
Logic for certifying the FSCQ file system. In Pro-
ceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[8] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek,
E. Kohler, and N. Zeldovich. Specifying crash
safety for storage systems. In Proceedings of the
15th Workshop on Hot Topics in Operating Sys-
tems (HotOS), Kartause Ittingen, Switzerland, May
2015.

[9] A. Cimatti, A. Griggio, B. Schaafsma, and R. Se-
bastiani. The MathSAT5 SMT solver. In Proceed-
ings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, pages 93–107, Rome, Italy, Mar. 2013.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich,
R. T. Morris, and E. Kohler. The scalable com-
mutativity rule: Designing scalable software for
multicore processors. In Proceedings of the 24th
ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 1–17, Farmington, PA, Nov.
2013.

[11] Coq development team. The Coq Proof Assis-
tant Reference Manual, Version 8.5pl2. INRIA,
July 2016. http://coq.inria.fr/distrib/
current/refman/.

[12] J. Corbet. Thoughts on the ext4 panic, Oct. 2012.
https://lwn.net/Articles/521803/.

[13] J. Corbet. A tale of two data-corruption bugs, May
2015. https://lwn.net/Articles/645720/.

[14] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a
simple Unix-like teaching operating system, 2016.
http://pdos.csail.mit.edu/6.828/xv6.

[15] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340,
Budapest, Hungary, Mar.–Apr. 2008.

[16] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif.
Inside a verified flash file system: Transactions
& garbage collection. In Proceedings of the 7th
Working Conference on Verified Software: Theo-
ries, Tools and Experiments, San Francisco, CA,
July 2015.

[17] FUSE. Filesystem in userspace, 2016. https://
github.com/libfuse/libfuse.

[18] G. R. Ganger and Y. N. Patt. Metadata update per-
formance in file systems. In Proceedings of the 1st
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 49–60, Monterey, CA,
Nov. 1994.

[19] R. Hagmann. Reimplementing the Cedar file sys-
tem using logging and group commit. In Proceed-
ings of the 11th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 155–162, Austin,
TX, Nov. 1987.

14

http://cython.org/
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/
https://lwn.net/Articles/521803/
https://lwn.net/Articles/645720/
http://pdos.csail.mit.edu/6.828/xv6
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

[20] V. Henson. The many faces of fsck, Sept. 2007.
https://lwn.net/Articles/248180/.

[21] V. Henson, Z. Brown, T. Ts’o, and A. van de Ven.
Reducing fsck time for ext2 file systems. In Pro-
ceedings of the Linux Symposium, pages 395–408,
Ottawa, Canada, June 2006.

[22] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A file system for virtualized flash storage. In
Proceedings of the 8th USENIX Conference on File
and Storage Technologies (FAST), pages 1–15, San
Jose, CA, Feb. 2010.

[23] R. Joshi and G. J. Holzmann. A mini challenge:
Build a verifiable filesystem. Formal Aspects of
Computing, 19(2):269–272, June 2007.

[24] J. C. King. Symbolic execution and program test-
ing. Communications of the ACM, 19(7):385–394,
July 1976.

[25] E. Koskinen and J. Yang. Reducing crash recover-
ability to reachability. In Proceedings of the 43rd
ACM Symposium on Principles of Programming
Languages (POPL), pages 97–108, St. Petersburg,
FL, Jan. 2016.

[26] LTP. Linux Test Project, 2016. http://
linux-test-project.github.io/.

[27] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S. Lu. A study of Linux file system
evolution. ACM Transactions on Storage, 10(1):
31–44, Jan. 2014.

[28] W. M. McKeeman. Peephole optimization. Com-
munications of the ACM, 8:443–444, July 1965.

[29] M. K. McKusick. Journaled soft-updates. In BSD-
Can, Ottawa, Canada, May 2010.

[30] M. K. McKusick and T. J. Kowalski. Fsck—the
UNIX file system check program. In UNIX Sys-
tem Manager’s Manual (SMM), 4.4 Berkeley Soft-
ware Distribution. University of California, Berke-
ley, Oct. 1996.

[31] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transac-
tions on Database Systems, 17(1):94–162, Mar.
1992.

[32] A. Niemetz, M. Preiner, and A. Biere. Boolector
2.0. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 9:53–58, 2015.

[33] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer-Verlag, Feb. 2016.

[34] L. O’Connor, Z. Chen, C. Rizkallah, S. Amani,
J. Lim, T. Murray, Y. Nagashima, T. Sewell, and
G. Klein. Refinement through restraint: Bringing
down the cost of verification. In Proceedings of the
21st ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 89–102,
Nara, Japan, Sept. 2016.

[35] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L.
Lawall, and G. Muller. Faults in Linux: Ten years
later. In Proceedings of the 16th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASP-
LOS), pages 305–318, Newport Beach, CA, Mar.
2011.

[36] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The operating system is the control plane.
In Proceedings of the 11th Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 1–16, Broomfield, CO, Oct. 2014.

[37] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal:
On the complexity of crafting crash-consistent ap-
plications. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), pages 433–448, Broomfield, CO,
Oct. 2014.

[38] A. Pnueli, M. Siegel, and E. Singerman. Transla-
tion validation. In Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 151–
166, Lisbon, Portugal, Mar.–Apr. 1998.

[39] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Model-based failure analysis of
journaling file systems. In Proceedings of the 35th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages
802–811, Yokohama, Japan, June–July 2005.

[40] V. Prabhakaran, L. N. Bairavasundaram,
N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. IRON file systems.
In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP), pages
206–220, Brighton, UK, Oct. 2005.

15

https://lwn.net/Articles/248180/
http://linux-test-project.github.io/
http://linux-test-project.github.io/

[41] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Copenhagen, Denmark, July
2002.

[42] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano,
A. Madhavapeddy, and P. Sewell. SibylFS: formal
specification and oracle-based testing for POSIX
and real-world file systems. In Proceedings of the
25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 38–53, Monterey, CA, Oct.
2015.

[43] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The
Linux B-tree filesystem. ACM Transactions on
Storage, 9(3), Aug. 2013.

[44] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. In
Proceedings of the 13th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 1–15, Pa-
cific Grove, CA, Oct. 1991.

[45] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.
Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error
propagation analysis for file systems. In Proceed-
ings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI), pages 270–280, Dublin, Ireland, June
2009.

[46] H. Samet. Proving the correctness of heuristically
optimized code. Communications of the ACM, 21
(7):570–582, July 1978.

[47] G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg,
and W. Reif. Development of a verified flash file
system. In Proceedings of the ABZ Conference,
June 2014.

[48] T. Sewell, M. Myreen, and G. Klein. Transla-
tion validation for a verified OS kernel. In Pro-
ceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 471–482, Seattle, WA, June
2013.

[49] E. Torlak and R. Bodik. A lightweight symbolic
virtual machine for solver-aided host languages. In
Proceedings of the 2014 ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI), pages 530–541, Edinburgh,
UK, June 2014.

[50] L. Torvalds. Re: [patch] measurements, numbers
about CONFIG_OPTIMIZE_INLINING=y impact, Jan.
2009. https://lkml.org/lkml/2009/1/9/497.

[51] C. M. Wintersteiger, Y. Hamadi, and L. de Moura.
Efficiently solving quantified bit-vector formulas.
In Proceedings of the 10th Conference on Formal
Methods in Computer-Aided Design, pages 239–
246, Lugano, Switzerland, Oct. 2010.

[52] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
Using model checking to find serious file system er-
rors. In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI),
pages 273–287, San Francisco, CA, Dec. 2004.

[53] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. En-
gler. Automatically generating malicious disks us-
ing symbolic execution. In Proceedings of the 27th
IEEE Symposium on Security and Privacy, pages
243–257, Oakland, CA, May 2006.

[54] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
EXPLODE: A lightweight, general system for find-
ing serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 131–146,
Seattle, WA, Nov. 2006.

[55] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillib-
ridge, E. S. Yang, B. W. Zhao, and S. Singh. Tor-
turing databases for fun and profit. In Proceedings
of the 11th Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 449–464,
Broomfield, CO, Oct. 2014.

16

https://lkml.org/lkml/2009/1/9/497

	Introduction
	Overview
	Specification
	Implementation
	Verification
	Optimizations and compilation
	Summary

	The Yggdrasil architecture
	Reasoning about systems with crashes
	The verifier
	The counterexample visualizer
	The optimizer

	The Yxv6 file system
	Design overview
	Stacking layers of abstraction
	Refining disk layouts
	Refining crash consistency models
	Summary of design trade-offs

	Beyond file systems
	Discussion
	Implementation
	Evaluation
	Related work
	Conclusion

