
 

17.  Formal Concurrency 

In this handout we take a more formal view of concurrency. Our goal is to be able to prove that a gen-

eral concurrent program implements a spec.  

We begin with a fairly precise account of the non-atomic semantics of Spec. Next we explain the gen-

eral method for making large atomic actions out of small ones (easy concurrency) and prove its cor-

rectness. We continue with several examples of concurrency, both easy and hard: mutexes, condition 

variables, read-write locks, buffers, and non-atomic clocks. Finally, we give fairly careful proofs of 

correctness for some of the examples. 

Non-atomic semantics of Spec 

We have already seen that a Spec module is a way of defining an automaton, or state machine, with 

steps corresponding to the invocations of external atomic procedures. This view is sufficient if we only 

have functions and atomic procedures, but when we consider concurrency we need to extend it to in-

clude internal steps. To properly model crashes, we introduced the idea of atomic commands that may 

not be interrupted. We did this informally, however, and since a crash “kills” any active procedure, we 

did not have to describe the possible behaviors when two or more procedures are invoked and running 

concurrently. This section describes the concurrent semantics of Spec.  

The most general way to describe a concurrent system is as a collection of independent atomic actions 

that share a collection of variables. If the actions are A1, ..., An then the entire system is just the 

‘or’ of all these actions: A1 [] ... [] An. In general only some of the actions will be enabled, but 

for each step the system non-deterministically chooses an action to execute from all the enabled ac-

tions. Thus non-determinism encompasses concurrency. In the language of Lamport’s TLA, each ac-

tion is a predicate relating a pre-state and a post-state, and [] is logical “or”. 

Usually, however, we find it convenient to carry over into the concurrent world as much of the frame-

work of sequential computing as possible. To this end, we model the computation as a set of threads 

(also called ‘tasks’ or ‘processes’), each of which executes a sequence of atomic actions; we denote 

threads by variables h, h', etc.; since t has other useful meanings. To define its sequence, each thread 

has a state variable called its ‘program counter’ $pc, and each of its actions has the form (h.$pc = α) 

=> c, (this is Spec for 𝐢𝐟 ℎ. $𝑝𝑐 = 𝛼) 𝐭𝐡𝐞𝐧 𝑐, and [*] is Spec for 𝐞𝐥𝐬𝐞) so that c can only execute 

when h’s program counter equals α. Different actions have different values for α, so that at most one 

action of a thread is enabled at a time. Each action advances the program counter with an assignment 

of the form h.$pc := β, enabling the thread’s next action.  

It’s important to understand there is nothing truly fundamental about threads, that is, about organizing 

the state transitions into sets such that at most one action is enabled in each set. We do so because we 

can then carry forward much of what we know about sequential computing into the concurrent world. 

In fact, we want to achieve our performance goals with as little concurrency as possible, since concur-

rency is confusing and error-prone. 

We now explain how to use this view to understand the non-atomic semantics of Spec. 



Non-atomic commands and threads 

Unlike an atomic command, a non-atomic command cannot be described simply as a relation between 

states and outcomes, that is, an atomic step. The simple example of a non-atomic assignment 

x := x + 1 executed by two threads should make this clear: the outcome can increase x by 1 or 2, 

depending on the interleaving of the steps in the two threads. Rather, a non-atomic command corre-

sponds to a sequence of atomic steps, which may be interleaved with the sequences of other com-

mands executing concurrently. To describe this interleaving, we use labels and program counters. We 

also need to distinguish the various threads of concurrent computation.  

Intuitively, threads represent sequential processes. Roughly speaking, each point in the program be-

tween two atomic commands is assigned a label. Each thread’s program counter $pc takes a label as 

its value,1, indicating where that thread is in the program, that is, what command it is going to execute 

next. The variables declared by a program are not allowed to have labels as their values, hence there is 

no Label type. 

Spec threads are created by top level THREAD declarations in a module. They make all possible concur-

rency explicit at the top level of each module. A thread is syntactically much like a procedure, but in-

stead of being invoked by a client or by another procedure, it is automatically invoked in parallel ini-

tially, for every possible value of its arguments.2 When it executes a RET (or reaches the end of its 

body), a thread simply makes no more steps. However, threads are often written to loop indefinitely.   

A thread is named by the name in the declaration and the argument values. Thus, the threads declared 

by THREAD Foo(bool) = ..., for example, would be named Foo(true) and Foo(false) The names 

of local variables are qualified by both the name of the thread that is the root of the call stack, and by 

the name of the procedure invoked.3 In other words, each procedure in each thread has its own set of 

local variables. For example, the local variable p in the Sieve example appears in the state as 

Sieve(0).p, Sieve(1).p, .... If there were a PROC Foo called by Sieve with a local variable baz, 

the state might be defined at Sieve(0).Foo.baz, Sieve(1).Foo.baz, .... The pseudo-names $a, 

$x, and $pc are qualified only by the thread. 

Each atomic command defines a step, just as in the sequential semantics. However, now a step is ena-

bled by the program counter value. That is, a step can only occur if the program counter of some 

thread equals the label before the command, and the step sets the program counter of that thread to the 

label after the command. If the command at the label in the program counter fails (can’t make any 

steps), the thread is “stuck” and does not make any steps. For example, this might happen because it 

has a guard that tests for a buffer to be non-empty, and the buffer is empty in the current state. Howev-

er, it may become unstuck later, because of the steps of some other threads; for example, another 

                                                 
1 The variables declared by a program are not allowed to have labels as their values, hence there is no Label type. 
2 This differs from the threads in Java, in Modula 3, or in many C implementations. These languages start a computation 

with one thread and allow it to create and destroy threads dynamically using fork and join operations. The reason for 

Spec’s scheme is that it makes all the concurrency explicit at a glance. 
3 This works for non-recursive procedures. To accommodate recursive procedures, the state must involve something equiv-

alent to a stack. Probably the simplest solution is to augment the state space by tacking on the nesting depth of the proce-

dure to all the names and program counter values defined above. For example, h + ".P.v" becomes h + ".P.v" + 

d.enc, for every positive integer d. An invocation transition at depth d goes to depth d+1. You can see that the interaction 

between threads and control flow can get pretty messy. 



thread might put something into the buffer. Thus, a command failing does not necessarily (or even 

usually) mean that the thread fails.  

We won’t give the non-atomic semantics precisely here, since it involves many fussy details that don’t 

add much insight. Also, it’s somewhat arbitrary. You can always get exactly the atomicity you want by 

adding local variables and semicolons to increase the number of atomic steps (see the examples be-

low), or <<...>> brackets to decrease it. 

It’s important, however, to understand the basic ideas. 

• Each atomic command in a thread or procedure defines a step (atomic procedures and functions are 

taken care of by the atomic semantics).  

• The program counters enable steps: a step can only occur if the program counter for some thread 

equals the label before the command, and the step sets that program counter to the label after the 

command. 

Thus the state of the system is the global state plus the state of all the threads. The state of a thread is 

its $pc, $a, and $x values, the local variables of the thread, and the local variables of each procedure 

that has been called by the thread and has not yet returned. 

Suppose the label before the command c is α and the one after the command is β, and the step function 

defined by the atomic semantics is ( s, o | rel).4 Then if c is in thread h, its step function is  

( s, o | s(h+".$pc") = α /\ o(h+".$pc) = β /\ rel') 

Here rel' is rel with each reference to a local variable v changed to h + ".v" or h + ".P.v".  

If c is in procedure P, that is, c can execute for any thread whose program counter has reached α, its 

step function is 

(  s, o | (EXISTS h: Thread |  
s(h+".P.$pc") = α /\ o(h+".P.$pc) = β /\ rel')) 

Here are some examples of a non-atomic program translated into the non-deterministic form. The first 

one is very simple: 

[] C1 ; [] C2 []    pc= => << C1;  pc:= >> 

 [] pc= => << C2; pc:= >> 

 [] pc= => ... 

As you can see, [] C; [] translates to pc= => << C; pc:= >>. If there’s a non-deterministic 

choice, that shows up as a choice in one of the actions of the translation. For example, because ; binds 

more tightly that [], 

[] IF C1 ; [] C2 [] C3 FI []    pc= => IF << C1;  pc:= >> 

             [] << C3; pc:= >> 

             FI 

 [] pc= => << C2; pc:= >> 

 [] pc= => ... 

You might find it helpful to write out the state transition diagram for this program. 

                                                 
4 This function gives the relation between the initial state s and the final outcome (state or exception) o. 



The second example is a simple real Spec program. The next section explains the detailed rules for 

where the labels go in Spec; note that an assignment is two atomic actions, one to evaluate the expres-

sion on the right and the other to change the variable on the left. The extra local variable t is a place to 

store the value between these two actions. 

 VAR t | 

[1] DO i < n =>    << pc= /\ i < n => pc:= [*] pc:= >> 

    [] sum := [] sum + x(i); []<< pc= => t := sum + x(i);  pc:= >> 

 []<< pc= => sum := t;  pc:= >> 

    [] i := [] i + 1 []<< pc= => t := i + 1;  pc:= >> 

 []<< pc= => i := 1;  pc:= >> 

OD [] []<< pc= => ... 

Labels in Spec 

What are the atomic steps in a Spec program? In other words, where do we put the labels? The basic 

idea is to build in as little atomicity as possible, since you can always put in what you need with 

<<...>>. However, expression evaluation must be atomic, or reasoning about expressions would be a 

mess. To use Spec to model code in which expression evaluation is not atomic (C code, for example), 

you must add temporary variables. Thus x := a + b + c becomes  
VAR t | << t := a >>; << t := t + b >>; << x := t + c >> 

For a real-life example of this, see MutexImpl.acq below. 

The simple commands, SKIP, HAVOC, RET, and RAISE, are atomic, as is any command in atomicity 

brackets <<...>>.  

For an invocation, there is a step to evaluate the argument and set the $a variable, and one to send con-

trol to the start of the body. The RET command’s step sets $a and leaves control at the end of the body. 

The next step leaves control after the invocation. So every procedure invocation has at least four steps: 

evaluate the argument and set $a, send control to the body, do the RET and set $a, and return control 

from the body. The reason for these fussy details is to ensure that the invocation of an external proce-

dure has start and end steps that do not change any other state. These are the steps that appear in the 

trace and therefore must be identical in both the spec and the code that implements it. 

Minimizing atomicity means that an assignment is broken into separate steps, one to evaluate the right 

hand side and one to change the left hand variable. This also has the advantage of consistency with the 

case where the right hand side is a non-atomic procedure invocation. Each step happens atomically, 

even if the variable is “big”. Thus x := exp is 
VAR t | << t := exp >> ; << x := t >> 

and x := p(y) is 
p(y); << x := $a >> 

Since there are no additional labels for the c1 [] c2 command, the initial step of the compound 

command is enabled exactly when the initial step of either of the subcommands is enabled (or if they 

both are). Thus, the choice is made based only on the first step. After that, the thread may get stuck in 

one branch (though, of course, some other thread might unstick it later). The same is true for [*], ex-

cept that the initial step for c1 [*] c2 can only be the initial step of c2 if the initial step of c1 is not 

enabled. And the same is also true for VAR. The value chosen for id in VAR id | c must allow c to 

make at least one step; after that the thread might get stuck.  



DO has a label, but OD does not introduce any additional labels. The starting and ending program coun-

ter value for c in DO c OD is the label on the DO. Thus, the initial step of c is enabled when the pro-

gram counter is the label on the DO, and the last step sets the program counter back to that label. When 

c fails, the program counter is set to the label following the OD.  

To sum up, there’s a label on each :=, =>, ‘;’, EXCEPT, and DO outside of <<...>>. There is never any 

label inside atomicity brackets. It’s convenient to write the labels in brackets after these symbols.  

There’s also a label at the start of a procedure, which we write on the = of the declaration, and a label 

at the end. There is one label for a procedure invocation, after the argument is evaluated; we write it 

just before the closing ‘)’. After the invocation is complete, the PC goes to the next label after the in-

vocation, which is the one on the := if the invocation is in an assignment. 

Because of this labeling, as we said before, a procedure invocation has  

one step to evaluate the argument expression, 

one to set the program counter to the label immediately before the procedure body, 

one for each step of the procedure body (using the labels of the body),  

one for the RET command in the body, which sets the program counter after the body, 

and a final step that sets it to the label immediately following the invocation.  

Here is a meaningless sequential example, just to show where the labels go. They are numbered in the 

order they are reached during execution. 

PROC P() = [P1] VAR x, y | 

IF x > 5 => [P2] x := [P4] Q(x + 1, 2 [P3]); [P5] y := [P6] 3  

[] << y := 4 >>  

FI; [P7]  

VAR z | DO [P8] << P() >> OD [P9] 

External actions 

In sequential Spec a module has only external actions; each invocation of a function or atomic proce-

dure is an external action. In concurrent Spec there are two differences:  

1. There are internal actions. These can be actions of an externally invoked PROC or actions of a 

thread declared and executing in the module. 

2. There are two external actions in the external invocation of a (non-atomic) procedure: the call, 

which sends control from after evaluation of the argument to the entry point of the procedure, and 

the return, which sends control from after the RET command in the procedure to just after the invo-

cation in the caller. These external steps do not affect the $a variable that communicates the argu-

ment and result values. That variable is set by the internal steps that compute the argument and do 

the RET command. 

There’s another style of defining external interfaces in which every external action is an APROC. If you 

want to get the effect of a non-atomic procedure, you have to break it into two APROC’s, one that deliv-

ers the arguments and sets the internal state so that internal actions do the work of the procedure body, 

and a second that gets the result. I/O automata5 use this style, but we don’t. 

                                                 
5 Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996, Chapter 8. 



Examples 

Here are two Spec programs that search for prime numbers and collect the result in a set primes; both 

omit the even numbers, initializing primes to {2}. Both are based on the sieve of Eratosthenes, testing 

each prime less than n1/2 to see whether it divides n (of course this is not an efficient way of testing for 

primality). Since the threads may not be synchronized, we must ensure that all the numbers ≤ n1/2 have 

been checked before we check n.  

The first example is more like a spec, using an infinite number of threads, one for every odd number.   

CONST Odds = {i: Nat | i // 2 = 1 /\ i > 1 } 

VAR primes : SET Nat := {2} 

done : SET Nat := {} % numbers checked 

INVARIANT (ALL n: Nat |   n IN done /\ IsPrime(n) ==> n IN primes 

                       /\ n IN primes ==> IsPrime(n)) 

THREAD Sieve1(n :IN Odds) =  

 {i :IN Odds | i <= Sqrt(n)} <= done => % Wait for possible factors 
IF (ALL p :IN primes | p <= Sqrt(n) ==> n mod p # 0) =>  

<< primes := primes ∪ {n} >> 
[*] SKIP 

FI; 

<< done = done ∪ {n} >> % No more steps 

FUNC Sqrt(n: Nat) -> Int = RET { i: Nat | i*i <= n }.max 

The second example, on the other hand, is closer to code, running ten parallel searches. Although there 

is one thread for every integer, only threads Sieve(0),  Sieve(1), …,  Sieve(9) are “active”, be-

cause of the initial guard, Differences from Sieve1 are boxed. 

CONST nThreads := 10 

VAR primes : SET Int := {2} 

next := nThreads.seq 

THREAD Sieve(i: Int) = next!i => 

next(i) := 2*i + 3; 

DO VAR n: Int  := next(i) | 

(ALL j :IN next.rng | j >= Sqrt(n)) => 

IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) => 

<< primes := primes ∪ {n} >> 
[*] SKIP  

FI; 

next(i) := n + 2*nThreads 

OD 

Big atomic actions 

As we saw earlier, we need atomic actions for practical, easy concurrency. Spec lets you specify any 

grain of atomicity in the program just by writing << ... >> brackets. (As we have seen, Spec does treat 



expression evaluation as atomic. Recall that if you are dealing with an environment in which an ex-

pression like x(i) + f(y) can’t be evaluated atomically, you should model this by writing VAR t1, 

t2 | t1 := x(i); t2 := f(y); ... t1 + t2 ....).) It doesn’t tell you where to write the 

brackets. If the environment in which the program runs doesn’t impose any constraints, it’s usually 

best to make the atomic actions as big as possible, because big atomic actions are easier to reason 

about. But big atomic actions are often too hard or too expensive to code, or the reduction in concur-

rency hurts performance too much, so that we have to make do with small ones. For example, in a 

shared-memory multiprocessor typically only the individual instructions are atomic, and we can only 

write one disk block atomically. So we are faced with the problem of showing that code with small 

atomic actions satisfies a spec with bigger ones. 

The idea 

The standard way of doing this is by some kind of ‘non-interference’. The idea is based on the follow-

ing observation. Suppose we have a program with a thread h that contains the sequence 

A; B  (1) 

as well as an arbitrary collection of other commands Ci. We denote the program counter value before A 

by α and at the semi-colon by : [] A; [] B. So the transition relation for the program is 

h.$pc = α => A [] h.$pc =  => B [] C1 [] C2 [] ... 

where each command has an appropriate guard that enables it only when the program counter for its 

thread has the right value. We have written the guards for A and B explicitly. 

Suppose B denotes an arbitrary atomic command, and A denotes an atomic command that commutes 

with every command in the program (other than B) that is enabled when h is at the semicolon, that is, 

when h.$pc = . (We give a precise meaning for ‘commutes’ below.) In addition, both A and B have 

only internal actions. Then it’s intuitively clear that the program with (1) simulates a program with the 

same commands except that instead of (1) it has 

<< A; B >> (2) 

Informally this is true because any C’s that happen between A and B have the same effect on the state 

that they would have if they happened before A, since they all commute with A. Note that the C’s don’t 

have to commute with B; commuting with A is enough to let us ‘push’ C before A. A symmetric argu-

ment works if all the C’s commute with B, even if they don’t commute with A. 

Thus we have achieved the goal of making a bigger atomic command << A; B >> out of two small 

ones A and B. We can call the big command D and repeat the process on E; D to get a still bigger 

command << E; A; B >>.  

How do we ensure that only a command C that commutes with A can execute while h.$pc = ? The 

simplest way is to ensure that the variables that A touches (reads or writes) are disjoint from the varia-

bles that C writes, and vice versa; then they will surely commute. Two such commands are called ‘non-

interfering’. There are two easy ways to show that commands are non-interfering. One is that A touch-

es only local variables of h. Only actions of h touch local variables of h, and the only action of h that is 

enabled when h.$pc =  is B. So any sequence of commands that touch only local variables is atomic, 

and if it is preceded or followed by a single arbitrary atomic command the whole thing is still atomic.6 

                                                 
6 See Lamport and Schneider. Pretending atomicity. Research Report 44, Digital Equipment Corporation Systems Research 

Center, Palo Alto, CA, May 1989. http://lamport.azurewebsites.net/pubs/pretending.pdf . 

http://lamport.azurewebsites.net/pubs/pretending.pdf


The other easy case is a critical section protected by a mutex. Recall that a critical section for v is a 

command with the property that if some thread’s PC is in the command, then no other thread’s PC can 

be in any critical section for v. If the only commands that touch v are in critical sections for v, then we 

know that only B and commands that don’t touch v can execute while h.$pc = . So if every com-

mand in any critical section for v only touches v (and perhaps local variables), then the program simu-

lates another program in which every critical section is an atomic command. A critical section is usual-

ly coded by acquiring a lock or mutex and holding it for the duration of the section. The property of a 

lock is that it’s not possible to acquire it when it is already held, and this ensures the mutual exclusion 

property for critical sections.  

It’s not necessary to have exclusive locks; reader/writer locks are sufficient for non-interference, be-

cause read operations all commute with each other. Indeed, any locking scheme will work in which 

non-commuting operations hold mutually exclusive locks; this is the basis of rules for ‘lock conflicts’. 

Another important case is mutex acquire and release operations. These operations only touch the 

mutex, so they commute with everything else. What about these operations on the same mutex in dif-

ferent threads? If both can execute, they certainly don’t yield the same result in either order; that is, 

they don’t commute. When can both operations execute? We have the following cases (writing the ex-

ecuting thread as an explicit argument of each operation): 

   A [] C Possible sequence (C is enabled at )? 
m.acq(h) m.acq(h') No: C is blocked by h holding m 
m.acq(h) m.rel(h') No: C won’t be reached because h' doesn’t hold m 
m.rel(h) m.acq(h') OK 
m.rel(h) m.rel(h') No: one thread doesn’t hold m, hence won’t do rel 

So m.acq commutes with everything that’s enabled at , since neither mutex operation is enabled at  

in a program that avoids havoc. But m.rel(h) doesn’t commute with m.acq(h'). The reason is that 

the A; C sequence can happen, but the C; A sequence m.acq(h'); m.rel(h) cannot, because in this 

case h doesn’t hold m and therefore can’t be doing a rel. Hence it’s not possible to flip every C in front 

of m.rel(h) in order to make A; B atomic. 

What does this mean? You can acquire more locks and still keep things atomic, but as soon as you re-

lease one, you no longer have atomicity.7  

A third important case of commuting operations, producer-consumer, is like the mutex case. A pro-

ducer and a consumer thread share no state except a buffer. The operations on the buffer are put and 

get, and these operations commute with each other. The interesting case is when the buffer is empty. 

In this case get is blocked until a put occurs, just as in the mutex example when h holds the lock 

m.acq(h') is blocked until m.rel(h) occurs. This is why programming with buffers, or dataflow pro-

gramming, is so easy. 

                                                 
7 Actually, this is not quite right. If you hold several locks, don’t acquire new ones after you release one, and touch data 

only when you hold its lock, you have atomicity until you release all the locks. This is called “two-phase locking”. 



Proofs 

How can we make all this precise and prove that a program containing (1) implements the same pro-

gram with (2) replacing (1), using our trusty method of abstraction relations? For easy reference, we 

repeat (1) and (2). 

<< A; B >> (2: S) 

A; [] B (1: U) 

As usual, we call the complete program containing (2) the spec S and the complete program containing 

(1) the code U. We need an abstraction relation AR between the states of U and the states of S under 

which every step of U simulates a (possibly empty) trace of S. Note that the state spaces of U and S are 

the same, except that h.$pc can never be  in S. We use s and u for states of S and U. 

First we need a precise definition of “C is enabled at  and commutes with A”. For any atomic com-

mand X, we write u X u' if X relates u to u'. The idea of ‘commutes’ is that <<A; C>>, as a relation 

between states, is a subset of the relation <<C; A>>. To make this precise all we need is to plug in the 

meaning of semicolon: C commutes with A iff 

(ALL u1, u2 |   (EXISTS u  | u1 A u  /\ u  C u2 /\ u("h.$pc") = )  

            ==> (EXISTS u' | u1 C u' /\ u’ A u2) ) 

This says that any result that you could get by doing A; C you could also get by doing C; A. Note that 

it’s OK for C; A to have more steps, since we want to show that A; C; B implements C; 

<< A; B >>, not that they are equivalent. This is not just nit-picking; if C tries to acquire a lock that A 

holds, there is no step from A to C in the first case. 

It seems reasonable to do the proof by making A simulate the empty trace and B simulate <<A; B>>, 

since we know more about A than about B; every other command simulates itself.  

 

So we make AR the identity everywhere except at , where it relates any state u that can be reached 

from s by A to s. This expresses the intention that at  we haven’t yet done A in S, but we have done A 

in U. (Since A may take many states to u, this can’t just be an abstraction function.) We write s ~ u 

for “AR relates s to u”. Precisely, we say that s ~ u if 
   u("h.$pc")   /\ s = u 

\/ u("h.$pc") =  /\ s A u. 

Why is this an abstraction relation? It certainly relates an initial state to an initial state, and it certainly 

works for any step u -> u' that stays away from , that is, in which u("h.$pc") ≠  and 

u'("h.$pc") ≠ , since the abstract and concrete states are the same. What about steps that do in-

volve ? 

 
s s 

u s 

= ~ 

A 

SKIP 
s' 

s' 

= 

B 

<< A ; B >> 

u("$pc") =  



• If h.$pc changes to  then we must have executed A. The picture is 

 

The abstract trace is empty, so the abstract state doesn’t change: s = s'. Also, s = u because only 

equal states are related when h.$pc # . But we executed A, so u A u', so s' ~ u' because of 

the equalities. 

• If h.$pc starts at  then the command must be either B or some C that commutes with A. If the 

command is B, then the picture is 

 

To show the top relation, we have to show that there exists an s0 such that s A s0 and s0 B s', 

by the meaning of semicolon. But u has exactly this property, since s' = u'. 

• If the command is C, then the picture is 

 

But this follows from the definition of ‘commutes’: we are given s, u, and u' related as shown, and 

we need s' related as shown, which is just what the definition gives us, with u1 = s, u2 = u', 

and u' = s'. Less formally, the diagram commutes because << C ; A >> = << A ; C >>.  

Examples of concurrency 

This section contains several examples of specs and code that illustrate various aspects of con-

currency. The specs have large atomic actions that keep them simple. The codes have smaller 

atomic actions that reflect the realities of the machines on which they run. Some of the exam-

ples of code illustrate easy concurrency (using locks): RWLockImpl and BufferImpl. Others il-

lustrate hard concurrency: SpinLock and ClockImpl. 
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Incrementing a register 

The first example involves incrementing a register (or a single memory location) that has Read and 

Write operations. Here is the unsurprising spec of the register, which makes both operations atomic:  

MODULE Register EXPORT Read, Write = 
VAR x : Int := 0 

APROC Read() -> Int = << RET x  >> 

APROC Write(i: Int) = << x := i >> 

END Register 

To increment the register, we might be tempted to use the following (bad) procedure:  
 

PROC Increment() = VAR t: Int |  

t := Register.Read(); t := t + 1; Register.Write(t) 

Suppose that, starting from the initial state where x = 0, n threads execute Increment in parallel. Then, 

depending on the interleaving of the low-level steps, the final value of the register could be anything 

from 1 to n. This is unlikely to be what was intended. Certainly this code doesn’t implement the obvi-

ous spec 

PROC Increment() = << x := x + 1 >> 

Exercise: Suppose that we weaken our atomicity assumptions to say that the value of a register is rep-

resented as a sequence of bits, and that the only atomic operations are reading and writing individual 

bits. Now what are the possible final states if n threads execute Increment in parallel? 

Alternatively, consider a new module RWInc that explicitly supports Increment operations in addition 

to Read and Write. This might add the following (exported) procedure to the Register module:  

PROC Increment() = x := x+1 

Or, more explicitly:  

PROC Increment() =  VAR t: Int | << t := x >>; << x := t+1 >> 

Because of the fine grain of atomicity, it is still true that if n threads execute Increment in parallel 

then, depending on the interleaving of the low-level steps, the final value of the register could be any-

thing from 1 to n. Putting the procedure inside the Register module doesn’t help. Of course, making 

Increment an APROC would certainly do the trick. 

Mutexes 

Here is a spec of a simple Mutex module, which can be used to ensure mutually exclusive execution of 

critical sections. The state of a mutex is the thread that holds the mutex, or nil if it’s free.  

CLASS Mutex EXPORT acq, rel = 
VAR m : (Thread + Null) := nil 

% Each mutex is either nil or the thread holding the mutex. 

% The variable SELF is defined to be the thread currently making a step. 
APROC acq() = << m = nil  => m := SELF; RET >> 

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 

END Mutex 



If a thread invokes acq when m ≠ nil, then the body fails. This means that there’s no possible step for 

that thread, and the thread is blocked, waiting at this point until the guard becomes true.  If many 

threads are blocked at this point, then when m is set to nil, one is scheduled first and it sets m to itself 

atomically; the other threads are still blocked.  

The spec says that if a thread that doesn’t hold m does m.rel, the result is HAVOC. As usual, this means 

that the code is free to do anything when this happens. As we shall see in the SpinLock code below, 

one possible ‘anything’ is to free the mutex anyway. 

Here is a simple use of a mutex m to make the Increment procedure atomic:  
 

PROC Increment() = VAR t: Int | 

m.acq; t := Register.Read(); t := t + 1; Register.Write(t); m.rel 

This keeps concurrent calls of Increment from interfering with each other. If there are other write ac-

cesses to the register, they must also use the mutex to avoid interfering with threads executing 

Increment. 

Spin locks 

A simple way to code a mutex is to use a spin lock. The name is derived from the behavior of a thread 

waiting to acquire the lock—it “spins”, repeatedly attempting to acquire the lock until it is finally suc-

cessful. 

Here is incorrect code:  

CLASS BadSpinLock EXPORT acq, rel = 
TYPE FH = ENUM[free, held] 

VAR fh := free 

PROC acq() =  

DO << fh = held => SKIP >> OD;  % wait for fh = free 

<< fh := held >> % and acquire it 
PROC rel() = << fh := free >> 

END BadSpinLock 

This is wrong because two concurrent invocations of acq could both find fh = free and subsequently 

both set fh := held and return. 

Here is correct code. It uses a more complex atomic command in the acq procedure (highlighted in 

bold). This command corresponds to the atomic “test-and-set” instruction provided by many real ma-

chines to code locks. It records the initial value of the lock, and then sets it to held. Then it tests the 

initial value; if it was free, then this thread was successful in atomically changing the state of the lock 

from free to held. Otherwise some other thread must hold the lock, so we “spin”, repeatedly trying to 

acquire it until we succeed. The important difference in SpinLock is that the guard now involves only 

the local variable t, instead of the global variable fh in BadSpinLock. A thread acquires the lock when 

it is the one that changes it from free to held, which it checks by testing the value returned by the 

test-and-set.  

CLASS SpinLock EXPORT acq, rel = 
TYPE FH = ENUM[free, held] 

VAR fh := free 



PROC acq() = VAR t: FH |  

DO << t := fh; fh := held >>; IF t = free => RET [*] SKIP FI OD 

PROC rel() = << fh := free >> 

END SpinLock 

Of course code that spins is not practical in general unless each thread has its own processor; it is used, 

however, in the kernels of most operating systems for computers with several processors. 

The SpinLock code differs from the Mutex spec in another important way. It “forgets” which thread 

owns the mutex. The following ForgetfulMutex module is useful in understanding the SpinLock 

code—in ForgetfulMutex, the threads get forgotten, but the atomicity is the same as in Mutex.  

CLASS ForgetfulMutex EXPORT acq, rel = 
TYPE FH = ENUM[free, held] 

VAR fh := free 

PROC acq() = << fh = free => fh := held >> 

PROC rel() = << fh := free >> 

END ForgetfulMutex 

Note that ForgetfulMutex releases a mutex regardless of which thread acquired it, and it does a SKIP 

if the mutex is already free. This is one of the behaviors permitted by the Mutex spec, which allows 

anything under these conditions. 

It’s not hard to show that SpinLock implements ForgetfulMutex and that ForgetfulMutex imple-

ments Mutex, from which it follows that SpinLock implements Mutex. We don’t give the abstraction 

functions here because they involve the details of program counters. 

Wait-free primitives 

It’s also possible to implement spin locks with a wait-free primitive rather than with test-and-set, alt-

hough this rather misses the point of wait-free synchronization. 

The simplest wait-free primitive is compare-and-swap (CAS), which is illustrated in the following 

code for acq. If the current contents of fh is free it stores new into fh (which is an address parameter 

in real life) and returns true; otherwise it is SKIP. Now acq has no atomicity brackets. 
 

VAR x : Any 

PROC acq() = DO VAR t := CAS(free, held); IF t => RET [*] SKIP FI OD 

APROC CAS(old: Any, new: Any)-> Bool =  

<< IF x = old => x := new; RET true [*] RET false >> 

A more general form of compare-and-swap allows you to do an arbitrary computation on the old con-

tents of a variable. It is called load-locked/store-conditional. The idea is that if anyone writes the vari-

able in between the load-locked and the store-conditional, the store fails. 
 

VAR lock : Bool := false % a global variable; could be per variable 
APROC LL() -> Any = << lock := true; RET x >> 

APROC SC(new: Any) -> BOOL = << IF lock => x := new; RET true [*] RET false >> 

Now we can write acq: 
 

PROC acq() = VAR fh’, OK: Bool | 

DO fh’ := LL();  



 IF fh’ = free => OK := SC(held); IF OK => RET [*] SKIP FI  

 [*] SKIP FI 

OD 

Of course we can program CAS using LL/SC: 
 

PROC CAS(old: Any, new: Any)-> Bool = VAR fh’, OK: Bool | 

fh’ := LL(); IF fh’ = old => OK := SC(new); RET OK [*] RET false FI 

We can also program operations such as incrementing a variable, either with CAS: 
VAR OK: Bool := false | DO ~OK => i := x; OK := CAS(i, i+1) OD 

or with LL/SC: 
VAR OK: Bool := false | DO ~OK => i := LL(); OK := SC(i+1) OD 

More generally, you can update an arbitrary data structure with an arbitrary function f by replacing 

i+1 in the CAS implementation with f(i). The way to think about this is that f computes a new ver-

sion of i, and you install it if the version hasn’t changed since you started. This is a form of optimistic 

concurrency control. Like optimistic concurrency control in general, the approach runs the danger of 

doing a lot of work that you then have to discard, or of starving some of the threads because they never 

get done before other threads sneak in and change the version out from under them. There are clever 

tricks for minimizing this danger; the basic idea is to queue your f for some other thread to execute 

along with its own. 

Read/write locks 

Here is a spec of a module that provides locks with two modes, read and write, rather than the single 

mode of a mutex. Several threads can hold a lock in read mode, but only one thread can hold a lock in 

write mode, and no thread can hold a lock in read mode if some thread holds it in write mode. In other 

words, read locks can be shared, but write locks are exclusive; hence the locks are also known as 

‘shared’ and ‘exclusive’. 

CLASS RWLock EXPORT rAcq, rRel, wAcq, wRel = 
TYPE ST = SET Thread 

VAR r : ST := {} 

w : ST := {} 

APROC rAcq() =  % Acquires r if no current write locks 

<<    SELF IN (r ∪ w) => HAVOC [*] w       = {} =>  r := r ∪ {SELF} >> 
APROC wAcq() = % Acquires w if no current locks 

<<    SELF IN (r ∪ w) => HAVOC [*] (r ∪ w) = {} =>  w :=     {SELF} >> 
APROC rRel() = % Releases r if the thread has it 

<< ~ (SELF IN r)       => HAVOC [*]                  r := r - {SELF} >> 

APROC wRel() = 

<< ~ (SELF IN w)       => HAVOC [*]                  w := {}         >> 

END RWLock 

The following simple code is like ForgetfulMutex. It has the same atomicity as RWLock, but uses a 

different data structure to represent possession of the lock. Specifically, it uses a single integer variable 

rw to keep track of the number of readers (positive) or the existence of a writer (-1).  

CLASS ForgetfulRWL EXPORT rAcq, rRel, wAcq, wRel = 
VAR rw := 0   

% >0 gives number of readers, 0 means free, -1 means one writer 



APROC rAcq() = << rw >= 0 => rw := rw + 1 >> 

APROC wAcq() = << rw  = 0 => rw := - 1 >> 

APROC rRel() = << rw := rw - 1 >> 

APROC wRel() = << rw := 0 >> 

END ForgetfulRWL 

Coding read/write lock using a mutex and condition variable 

This example shows how to use easy concurrency to make more complex locks and scheduling out of 

basic mutexes and conditions8. We use a single mutex and condition for all the read-write locks here, 

but we could have separate ones for each read-write lock, or we could partition the locks into groups 

that share a mutex and condition. The choice depends on the amount of contention for the mutex.  

Compare the code with ForgetfulRWL; the differences are highlighted with boxes. The <<...>> in 

ForgetfulRWL have become m.acq ... m.rel; this provides atomicity because shared variables are 

only touched while the lock is held. The other change is that each guard that could block (in this ex-

ample, all of them) is replaced by a loop that tests the guard and does c.wait if it doesn’t hold. The 

release operations do the corresponding signal or broadcast operations. 

CLASS RWLockImpl EXPORT rAcq, rRel, wAcq, wRel = % implements ForgetfulRWL 

VAR rw : Int := 0 

m: Mutex := m.new() 

c: Condition := c.new() 

% ABSTRACTION FUNCTION ForgetfulRWL.rw = rw 

PROC rAcq(l) = m.acq; DO ~ rw >= 0 => c.wait(m) OD; rw := rw + 1; m.rel 

PROC wAcq(l) = m.acq; DO ~ rw  = 0 => c.wait(m) OD; rw := -1;     m.rel 

PROC rRel(l) = m.acq; rw := rw - 1; IF rw = 0 => c.signal [*] SKIP FI; m.rel 

PROC wRel(l) = m.acq; rw := 0;                   c.broadcast;          m.rel 

END RWLockImpl 

This is the prototypical example for scheduling resources. There are mutexes (just m in this case) to 

protect the scheduling data structures, conditions (just c in this case) on which to delay threads that are 

waiting for a resource, and logic that figures out when it’s all right to allocate a resource (the read or 

write lock in this case) to a thread. 

Note that this code may starve a writer: if readers come and go but there’s always at least one of them, 

a waiting writer will never acquire the lock. How could you fix this? 

An unbounded FIFO buffer 

In this section, we give a spec and code for a simple unbounded buffer that could be used as a commu-

nication channel between two threads. This is the prototypical example of a producer-consumer rela-

tion between threads. Other popular names for Produce and Consume are Put and Get. 

                                                 
8 A condition variable has wait(m) and signal operations. c.wait(m) released m and blocks the thread on c, and 

c.signal unblocks a thread waiting on c, and c.broadcast unblocks all the waiting threads. 



MODULE Buffer[T] EXPORT Produce, Consume = 

VAR b : SEQ T := {} 

APROC Produce(t) = << b + := {t} >>  

APROC Consume() -> T = VAR t | << b # {} => t := b.head; b := b.tail; RET t >> 

END Buffer 

The code is another example of easy concurrency. 

MODULE BufferImpl[T] EXPORT Produce, Consume = 

VAR b : SEQ T := {} 

m := m.new() 

c := c.new() 

% ABSTRACTION FUNCTION Buffer.b = b 

PROC Produce(t) =  m.acq; IF b = {} => c.signal [*] SKIP FI; b + := {t}; m.rel 

PROC Consume() -> T = VAR t | 

m.acq; DO b = {} => c.wait(m) OD; t := b.head; b := b.tail; m.rel; RET t 

END BufferImpl 

… The remainder of the section on examples is omitted … 

Proving concurrent modules correct 

This section explains how to prove the correctness of concurrent program modules. It reviews the sim-

ulation method that we have already studied, which works just as well for concurrent as for sequential 

modules. Then several examples illustrate how the method works in practice. Things are more compli-

cated in the concurrent case because there are many more atomic steps, and because the program coun-

ters of the threads are part of the state. 

Before using this method in its full generality, you should first apply the theorem on big atomic ac-

tions as much as possible, to reduce the number of steps that your proofs need to consider. If you are 

programming with easy concurrency, that is, if your code uses a standard locking discipline and locks 

every shared variable before touching it, this will get rid of nearly all the work. If you are doing hard 

concurrency, there will still be lots of steps, and in doing the proof you will probably find bugs in your 

program. 

The formal method 

We use the same simulation technique that we used for sequential modules, as described in handouts 6 

and 8 on abstraction functions. In particular, we use the most general version of this method, presented 

near the end of handout 8. This version does not require the steps of the code to correspond one-for-

one with the steps of the spec. Only the external behavior (invocations and responses) must be the 

same—there can be any number of internal steps. The method proves that every trace (external behav-

ior sequence) produced by the code can also be produced by the spec. 

Of course, the utility of this method depends on an assumption that the external behavior of a module 

is all that is of interest to callers of the module. In other words, we are assuming here, as everywhere 



in this course, that the only interaction between the module and the rest of the program is through calls 

to the external routines provided by the module. 

We need to show that each step of the code simulates a sequence of steps of the spec. An external step 

must simulate a sequence that contains exactly one instance of the same external step and no other ex-

ternal steps; it can also contain any number of internal steps. An internal step must simulate a se-

quence that contains only internal steps.  

Here, once again, are the definitions: 

Suppose U and S are modules with same external interface. An abstraction function F is a function 

from states(U) to states(S) such that: 

Start: If u is any initial state of U then F(u) is an initial state of S. 

Step: If u and F(u) are reachable states of U and S respectively, and (u, , u') is a step of U, then 

there is an execution fragment of S from F(u) to F(u'), having the same trace.  

Thus, if  is an invocation or response, the fragment consists of a single  step, with any number of 

internal steps before and/or after. If  is internal, the fragment consists of any number (possibly 0) of 

internal steps. 

As we saw in handout 8, we may have to add history variables to U in order to find an abstraction 

function to S (and perhaps prophecy variables too). The values of history variables are calculated in 

terms of the actual variables, but they are not allowed to affect the real steps. 

An alternative to adding history variables is to define an abstraction relation instead of an abstraction 

function. An abstraction relation AR is a relation between states(U) and states(S) such that: 

Start: If u is any initial state of U then there exists an initial state s of S such that (u, s) ∊ AR. 

Step: If u and s are reachable states of U and S respectively, (u, s) ∊ AR, and (u, , u') is a step of 

U, then there is an execution fragment of S from s to some s' having the same trace, and such that 

(u', s') ∊ AR. 

Theorem: If there exists an abstraction function or relation from U to S then U implements S; that is, 

every trace of U is a trace of S. 

Proof: By induction. 

The strategy 

The formal method suggests the following strategy for doing hard concurrency proofs.  

1. Start with a spec, which has an abstract state. 

2. Choose a concrete state for the code. 

3. Choose an abstraction function, perhaps with history variables, or an abstraction relation. 

4. Write code, identifying the critical actions that change the abstract state. 

5. While (checking the simulation fails) do 



Add an invariant, checking that all actions of the code preserve it, or 

Change the abstraction function (step 3), the code (step 4), the invariant (step 5), or more than 

one, or 

Change the spec (step 1). 

This approach always works. The first four steps require creativity; step 5 is quite mechanical except 

when you find an error. It is somewhat laborious, but experience shows that if you are doing hard con-

currency and you omit any of these steps, your program will have bugs. Be warned. 

Prospectus for proofs 

The remainder of this handout contains example proofs of correctness for several of the examples 

above: the RWLockImpl code for a read/write lock, the ClockImpl code for a multi-word clock, and the 

BufferImpl code for a FIFO buffer.  

The proofs give the abstraction functions and key invariants, but do not check each simulation step. 

Read/write locks 

We sketch how to prove directly that the module RWLockImpl implements ForgetfulRWL. This could 

be done by big atomic actions, since the code uses easy concurrency, but as an easy introduction we 

discuss how to do it directly. The two modules are based on the same data, the variable rw. The differ-

ence is that RWLockImpl uses a mutex to restrict accesses to rw, so that a series of accesses to rw can 

be done atomically. It also uses a condition variable to prevent threads in acq from busy-waiting when 

they don’t see the condition they require.  

An abstraction function maps RWLockImpl to ForgetfulRWL. The interesting part of the state of 

ForgetfulRWL is the rw variable. We define that by the identity mapping from RWLockImpl. 

The mapping for steps is mostly determined by the rw identity mapping: the steps that assign to rw in 

RWLockImpl are the ones that correspond to the procedure bodies in ForgetfulRWL Then the checking 

of the state and step correspondences is pretty routine. 

There is one subtlety. It would be bad if a series of rw steps done atomically in ForgetfulRWL were 

interleaved in RWLockImpl. Of course, we know they aren’t, because they are always done by a thread 

holding the mutex. But how does this fact show up in the proof?  

The answer is that we need some invariants for RWLockImpl, that do for this specific case what easy 

concurrency with mutexes does in general. The first, a “dominant thread invariant”, says that only a 

thread whose name is in m (a ‘dominant thread’) can be in certain portions of its code (those guarded 

by the mutex). The dominant thread invariant is in turn used to prove other invariants called “data pro-

tection invariants”. 

For example, one data protection invariant says that if a thread (in RWLockImpl) is in middle of the as-

signment statement rw + := 1, then in fact rw  0 (that is, the test is still true). We need this data pro-

tection invariant to show that the corresponding abstract step (the body of rAcq in ForgetfulRWLock) 

is enabled.  

The proof of BufferImpl below illustrates these ideas in more detail. 



ClockImpl implements Clock 

Often it’s possible to get better performance by avoiding locking. Algorithms that do this are called 

‘wait-free’. Here we present a wait-free algorithm due to Lamport9 for reading and incrementing a 

clock, even if clock values do not fit into a single memory location that can be read and written atomi-

cally.  

We begin with the spec. It says that a Read returns some value that the clock had between the begin-

ning and the end of the Read. As we saw in handout 8 on generalized abstraction functions, where this 

spec is called LateClock, it takes a prophecy variable to show that this spec is equivalent to the sim-

pler spec that just reads the clock value. Here it is, with labels. 

MODULE Clock EXPORT Read = 

VAR t : Int := 0 % the current time 

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t 
PROC Read() -> Int = VAR t1: Int |  

[R1] << t1 := t >>; [R2] << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> [R3] 

END Clock 

To show that ClockImpl implements this we introduce a history variable t1Hist in Read that corre-

sponds to t1 in the spec, recording the time at the beginning of Read’s execution. The invariant that is 

needed is based on the idea that Read might complete before the next Tick, and therefore the value 

Read would return by reading the rest of the shared variables must be between t1Hist and Clock.t. 

We can write this most clearly by annotating the labels in Read with assertions that are true when the 

PC is there.  

MODULE ClockImpl EXPORT Read = 
CONST base := 2**32  

TYPE Word = Int SUCHTHAT word IN base.seq) 

VAR lo : Word := 0 

hi1 : Word := 0 

hi2 : Word := 0 

% ABSTRACTION FUNCTION Clock.t = T(lo, hi1, hi2), Clock.Read.t1 = Read.t1Hist, 

  Clock.Read.t2 = T(Read.tLo, Read.tH1, read.tH2) 

% The PC correspondence is R1  r1, R2  r2, r3, R3  r4 

THREAD Tick() = DO VAR newLo: Word, newHi: Word | 

<< newLo := lo + 1 // base; newHi := hi1 + 1 >>; 

IF << newLo # 0  => lo := newLo >> 

[*] << hi2 := newHi >>; << lo := newLo >>; << hi1 := newHi >> 

FI OD 

PROC Read() -> Int = VAR tLo: Word, tH1: Word, tH2: Word, t1Hist: Int |  

[r1] << tH1 := hi1; t1Hist := T(lo, hi1, hi2) >>; 

[r2] % I2: T(lo , tH1, hi2) IN t1Hist .. T(lo, hi1, hi2)  

     << tLo := lo; >> 

[r3] % I3: T(tLo, tH1, hi2) IN t1Hist .. T(lo, hi1, hi2)  

     << tH2 := hi2; RET T(tLo, tH1, tH2) >> 

[r4] % I4: $a IN t1Hist .. T(lo, hi1, hi2)  

                                                 
9 L. Lamport, Concurrent reading and writing of clocks. ACM Transactions on Computer Systems 8, 4 (Nov. 1990), pp 

305-310. 



FUNC T(l: Int, h1: Int, h2: Int) -> Int = h2 * base + (h1 = h2 => l [*] 0) 

END ClockImpl 

The whole invariant is thus 

h.$pc = r2 ==> I2 /\ h.$pc = r3 ==> I3 /\ h.$pc = r4 ==> I4 

The steps of Read clearly maintain this invariant, since they don’t change the value before IN. The 

steps of Tick maintain it by case analysis. 

BufferImpl implements Buffer 

The FIFO buffer is another example of easy concurrency, so again we don’t need to do a step-by-step 

proof for it. Instead, it suffices to show that a thread holds the lock m whenever it touches the shared 

variable b. Then we can treat the whole critical section during which the lock is held as a big atomic 

action, and the proof is easy. We will work out the important details of a low-level proof, however, to 

get some practice in a situation that is slightly more complicated but still straightforward, and to con-

vince you that the theorem about big atomic actions can save you a lot of work. 

First, we give the abstraction function; then we use it to show that the code simulates the spec. We use 

a slightly simplified version of Produce that always signals, and we introduce a local variable temp to 

make explicit the non-atomicity of assignment to the shared variable b. 

Abstraction function 

The abstraction function on the state must explain how to interpret a state of the code as a state of the 

spec. Remember that to prove a concurrent program correct, we need to consider the entire state of a 

module, including the program counters and local variables of threads. For sequential programs, we 

can avoid this by treating each external operation as a single atomic action. 

To describe the abstraction function, we thus need to explain how to construct a state of the spec from 

a state of the code. So what is a state of the Buffer module above? It consists of: 

• A sequence of items b (the buffer itself); 

• for each thread that is active in the module, a program counter; and 

• for each thread that is active in the module, values for local variables. 

A state of the code is similar, except that it includes the state of the Mutex and Condition modules.  

To define the mapping, we need to enumerate the possible program counters. For the spec, they are: 

P1 — before the body of Produce 

P2 — after the body of Produce 

C1 — before the body of Consume 

C2 — after the body of Consume 

or as annotations to the code: 



PROC Produce(t) = [P1] << b + := {t} >> [P2] 

PROC Consume() -> T = 

 [C1] << b # {} => VAR t := b.head | b := b.tail; RET t >> [C2] 

For the code, they are: 

• For a thread in Produce: 

p1 — before m.acq  

in m.acq—either before or after the action  

p2 — before temp := b + {t}  

p3 — before b := temp  

p4 — before c.signal  

in c.signal—either before or after the action  

p5 — before m.rel  

in m.rel—either before or after the action 

p6 — after m.rel 

• For a thread in Consume: 

c1 — before m.acq  

in m.acq—either before or after action  

c2 — before the test b # {}  

c3 — before c.wait  

in c.wait—at beginning, in middle, or at end  

c4 — before t := b.head  

c5 — before temp := b.tail  

c6 — before b := temp  

c7 — before m.rel  

in m.rel—either before or after action  

c8 — before RET t  

c9 — after RET t 

or as annotations to the code: 
PROC Produce(t) = VAR temp | 

 [p1] m.acq;  

 [p2] temp = b + {t};  

 [p3] b := temp;  

 [p4] c.signal;  

 [p5] m.rel  [p6] 

PROC Consume() -> T = VAR t, temp | 

[c1] m.acq; 

DO [c2] b # {} => [c3] c.wait OD; 

[c4] t := b.head; 

[c5] temp := b.tail; [c6] b := temp; 

[c7] m.rel; 

[c8] RET t [c9] 



Notice that we have broken the assignment statements into their constituent atomic actions, introduc-

ing a temporary variable temp to hold the result of evaluating the right hand side. Also, the PC’s in the 

Mutex and Condition operations are taken from the specs of those modules (not the code; we prove 

their correctness separately). Here for reference is the relevant code. 
 

APROC acq() = << m = nil  => m := SELF; RET >> 

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 

APROC signal() = << VAR hs: SET Thread |  
IF hs <= c /\ hs # {} => c - := hs [*] SKIP FI >> 

Now we can define the mapping on program counters: 

• If a thread h is not in Produce or Consume in the code, then it is not in either procedure in the spec. 

• If a thread h is in Produce in the code, then: 

If h.$pc is in {p1, p2, p3} or is in m.acq, then in the spec h.$pc = P1. 

If h.$pc is in {p4, p5, p6} or is in m.rel or c.signal then in the spec h.$pc = P2. 

• If a thread h is in Consume in the code, then: 

If h.$pc  {c1, …, c6} or is in m.acq or c.wait then in the spec h.$pc = C1. 

If h.$pc is in {c7, c8, c9} or is in m.rel then in the spec h.$pc = C2. 

The general strategy here is to pick, for each atomic step in the spec, some atomic step in the code to 

simulate it. Here, we have chosen the modification of b in the code to simulate the corresponding op-

eration in the spec. Thus, program counters before that point in the code map to program counters be-

fore the body in the spec, and similarly for program counters after that point in the code. 

This choice of the abstraction function for program counters determines how each step of the code 

simulates steps of the spec as follows: 

• If  is an external step,  simulates the singleton sequence containing just . 

• If  takes a thread from a PC of p3 to a PC of p4,  simulates the singleton sequence containing 

just the body of Produce. 

• If  takes a thread from a PC of c6 to a PC of c7,  simulates the singleton sequence containing just 

the body of Consume. 

• All other steps  simulate the empty sequence. 

This example illustrates a typical situation: we usually find that a step in the code simulates a sequence 

of either zero or one steps in the spec. Steps that have no effect on the abstract state simulate the empty 

sequence, while steps that change the abstract state simulate a single step in the spec. The proof tech-

nique used here works fine if a step simulates a sequence with more than one step in it, but this doesn’t 

show up in most examples. 

In addition to defining the abstract program counters for threads that are active in the module, we also 

need to define the values of their local variables. For this example, the only local variables are temp 

and the item t. For threads active in either Produce or Consume, the abstraction function on temp and 

t is the identity; that is, it defines the values of temp and t in a state of the spec to be the value of the 

identically named variable in the corresponding operation of the code. 



Finally, we need to describe how to construct the state of the buffer b from the state of the code. Given 

the choices above, this is simple: the abstraction function is the identity on b. 

Proof sketch 

To prove the code correct, we need to prove some invariants on the state. Here are some obvious ones; 

the others we need will become clear as we work through the rest of the proof. 

First, define a thread h to be dominant if h.$pc is in Produce and h.$pc is in {p2, p3, p4, p5} or is at 

the end of m.acq, in c.signal, or at the beginning of m.rel, or if h.$pc is in Consume and h.$pc is in 

{c2, c3, c4, c5, c6, c7} or is at the end of m.acq, at the beginning or end of c.wait (but not in the mid-

dle), or at the beginning of m.rel. 

Now, we claim that the following property is invariant: a thread h is dominant if and only if Mutex.m = 

h. This simply says that h holds the mutex if and only if its PC is at an appropriate point. This is the 

basic mutual exclusion property. Amazingly enough, given this property we can easily show that oper-

ations are mutually exclusive: for all threads h, h' such that h  h', if h is dominant then h' is not 

dominant. In other words, at most one thread can be in the middle of one of the operations in the code 

at any time. 

Now let’s consider what needs to be shown to prove the code correct. First, we need to show that the 

claimed invariants actually are invariants. We do this using the standard inductive proof technique: 

Show that each initial state of the code satisfies the invariants, and then show that each atomic action 

in the code preserves the invariants. This is left as an exercise. 

Next, we need to show that the abstraction function defines a simulation of the spec by the code. 

Again, this is an inductive proof. The first step is to show that an initial state of the code is mapped by 

the abstraction function to an initial state of the spec. This should be straightforward, and is left as an 

exercise. The second step is to show that the effects of each step are preserved by the abstraction func-

tion. Let’s consider a couple of examples. 

• Consider a step  from r to r' in which an invocation of an operation occurs for thread h. Then in 

state r, h was not active in the module, and in r', its PC is at the beginning of the operation. This 

step simulates the identical step in the spec, which has the effect of moving the PC of this thread to 

the beginning of the operation. So AF(r) is taken to AF(r') by the step. 

• Consider a step in which a thread h moves from h.$pc = p3 to h.$pc = p4, setting b to the value 

stored in temp. The corresponding abstract step sets b to b + {t}. To show that this step does the 

right thing, we need an additional invariant: 

If h.$pc = p3, then temp = b + {t}. 

To prove this, we use the fact that if h.$pc = p3, then no other thread is dominant, so no other step 

can change b. We also have to show that any step that puts h.$pc at this point establishes the con-

sequent of the implication — but there is only one step that does this (the one that assigns to temp), 

and it clearly establishes the desired property. 

The step in Consume that assigns to b relies on a similar invariant. The rest of the steps involve 

straightforward case analyses. For the external steps, it is clear that they correspond directly. For the 

other internal steps, we must show that they have no abstract effect, i.e., if they take r to r', then AF(r) 

= AF(r'). This is left as an exercise. 


