

Example: file systems

File systems are complex (e.g., Linux ext4 is ∼60,000 lines of code)
and have many bugs:

#
 p

a
tc

h
e
s

fo
r

b
u
g
s ext3

 0

 100

 200

 300

 400

 500

Jan'04 Jan'05 Jan'06 Jan'07 Jan'08 Jan'09 Jan'10 Jan'11

Cumulative number of patches for file-system bugs in Linux; data from [Lu et al., FAST’13]

1 / 4

Example: file systems

File systems are complex (e.g., Linux ext4 is ∼60,000 lines of code)
and have many bugs:

#
 p

a
tc

h
e
s

fo
r

b
u
g
s ext3

ext4
xfs

reiserfs
jfs

btrfs

 0

 100

 200

 300

 400

 500

Jan'04 Jan'05 Jan'06 Jan'07 Jan'08 Jan'09 Jan'10 Jan'11

Cumulative number of patches for file-system bugs in Linux; data from [Lu et al., FAST’13]

New file systems (and bugs) are introduced over time

1 / 4

Bug example: data corruption
commit 353b67d8ced4dc53281c88150ad295e24bc4b4c5
--- a/fs/jbd/checkpoint.c
+++ b/fs/jbd/checkpoint.c
@@ -504,7 +503,25 @@ int cleanup_journal_tail(journal_t *journal)

spin_unlock(&journal->j_state_lock);
return 1;

}
+ spin_unlock(&journal->j_state_lock);
+
+ /*
+ * We need to make sure that any blocks that were recently written out
+ * --- perhaps by log_do_checkpoint() --- are flushed out before we
+ * drop the transactions from the journal. It’s unlikely this will be
+ * necessary, especially with an appropriately sized journal, but we
+ * need this to guarantee correctness. Fortunately
+ * cleanup_journal_tail() doesn’t get called all that often.
+ */
+ if (journal->j_flags & JFS_BARRIER)
+ blkdev_issue_flush(journal->j_fs_dev, GFP_KERNEL, NULL);

+ spin_lock(&journal->j_state_lock);
+ if (!tid_gt(first_tid, journal->j_tail_sequence)) {
+ spin_unlock(&journal->j_state_lock);
+ /* Someone else cleaned up journal so return 0 */
+ return 0;
+ }

/* OK, update the superblock to recover the freed space.
* Physical blocks come first: have we wrapped beyond the end of
* the log? */

2 / 4

Bug example: data disclosure

Two optimizations in Linux ext4: direct data write and log checksum
Subtle interaction: new file can contain other users’ data after crash
Bug introduced in 2008, fixed in 2014 (six years later!)

Author: Jan Kara <jack@suse.cz>
Date: Tue Nov 25 20:19:17 2014 -0500

ext4: forbid journal_async_commit in data=ordered mode

Option journal_async_commit breaks gurantees of data=ordered mode as it
sends only a single cache flush after writing a transaction commit
block. Thus even though the transaction including the commit block is
fully stored on persistent storage, file data may still linger in drives
caches and will be lost on power failure. Since all checksums match on
journal recovery, we replay the transaction thus possibly exposing stale
user data.

[...]

3 / 4

