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Notes for 6.826 lecture 2—The Amazon paper 
 
The paper is 
Newcombe et al, How Amazon Web Services Uses Formal Methods, Comm. ACM 58, 4 (April 2015), 

pp 66-73.  
(The paper on the course web page is an informal version dated 29 September 2014, but it appears to 

have the same content as the published version). 
The paper refers to the TLA home page. Its current link is http://lamport.azureweb-

sites.net/tla/tla.html  

Talking points 

Amazon is about design, not correctness. Insight vs. model check vs. proof 
 
The best way to model a system is a single global state with atomic transitions. 
A spec is a set of traces. Internal vs. external 
Traces best represented by transitions of a state machine 
Safety and liveness 
Non-determinism >= concurrency 
 
TLA: Two-state predicate to describe transitions:  

𝑥 ∶= 𝑥 + 1 becomes 𝑥′ = 𝑥 + 1. Actually 𝑠’ = 𝑠[𝑥 : = 𝑥 + 1] (often written 𝑠′ = 𝑠[𝑥 + 1/𝑥] 
A disjunct for each transition. If more than one is enabled, non-determinism. 
Invariant 

Stages: 
Write down the state. 
Write down (name and specify) the interface (possible state transitions). 

 
Correctness of code by abstraction relation and simulation 

“If your system doesn’t have a spec it cannot be wrong, it can only be surprising” 
Traces of code ⊆ traces of spec 

How do you know the spec is correct? Keep it simple. 
Also, show that desired properties hold. 

 
Stages: 

Write down the state. 
Write down (name and specify) the interface (possible state transitions). 
Write the abstraction relation from the code. 
Do a simulation proof. 

 
Model checking. Amazon: We have found that model checking dramatically beats proof.  
Why? It’s automatic, and it finds most bugs, which show up on small examples. 
This is very different from doing formal correctness proofs in Coq. It’s less conclusive, but much 

cheaper. 
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Examples for specs: 

Notation 

Set comprehension is an important tool to avoid loops and recursion: {𝑥: 𝑇 | 𝑝(𝑥)} is the set of values 
𝑥 of type 𝑇 such that 𝑝(𝑥) is true. Often it’s a subset of another set 𝑠, written {𝑥 ∈ 𝑠 | 𝑝(𝑥)}. If the set is 
defined by some expression 𝑒 involving 𝑥, write it {𝑥: 𝑇 | 𝑝(𝑥) | 𝑒(𝑥)}. To list the elements of a set 
explicitly: {𝑎, 𝑏, 𝑐}. 

The state is declared with var, actions with 𝑛𝑎𝑚𝑒(𝑎𝑟𝑔𝑠): 𝑟𝑒𝑠𝑢𝑙𝑡𝑇𝑦𝑝𝑒. In an action var introduces 
a variable with an arbitrary value. 𝐯𝐚𝐫 𝑥: 𝑇, 𝐯𝐚𝐫 𝑥 ∈ 𝑠 and 𝐯𝐚𝐫 𝑥 ∈ 𝑠 | 𝑝(𝑥) give constraints on 𝑥 just 
like the ones for set comprehensions. 

Useful vocabulary for specs: A sequence 𝐬𝐞𝐪 𝑇 is a function from a prefix of 𝑁𝑎𝑡 to 𝑇. We write 
𝑖 . . 𝑗 for the sequence 0, 1, … , 𝑗 and 𝑓 ∘ 𝑔 for the composition of 𝑓 and 𝑔: first apply 𝑓, then apply 𝑔. 
Precisely 

(𝑓 ∘ 𝑔)(𝑥) = 𝑔(𝑓(𝑥)) 
If 𝑓 is a function, 𝑓. 𝑑𝑜𝑚 and 𝑓. 𝑟𝑛𝑔 are its domain and range, so if 𝑞 is the sequence 𝑎, 𝑏, 𝑐 then 
𝑞. 𝑑𝑜𝑚 = {0, 1, 2} and 𝑞. 𝑟𝑛𝑔 = {𝑎, 𝑏, 𝑐}. 𝑓[𝑥 ≔ 𝑦] has the same value as 𝑓 at every argument except 
𝑥, where its value is 𝑦. 

If 𝑓 and 𝑔 are functions, 𝑓 + 𝑔 is 𝑓 overlayed by 𝑔, that is, 𝑔 provides the value unless it’s 𝑁𝑜𝑛𝑒, in 
which case 𝑓 provides it:  𝑓 + 𝑔 = 𝐟𝐮𝐧 𝑥 ⟹ 𝐢𝐟 𝑔(𝑥) ≠ 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑔(𝑥) 𝐞𝐥𝐬𝐞 𝑓(𝑥)  

If 𝑞 is a sequence or set, 𝑚𝑎𝑝(𝑓, 𝑞) is 𝑞 ∘ 𝑓, the sequence or set obtained by applying 𝑓 to each 
element of 𝑞, and 𝑟𝑒𝑑𝑢𝑐𝑒(𝑓, 𝑞) is the elements of 𝑞 stuck together with 𝑓: 𝑓(… , 𝑓(𝑓(𝑞 , 𝑞 ), 𝑞 ), … , 𝑞 ), 
which is easier to read with 𝑓 as a binary operator: 𝑞 𝑓  𝑞  𝑓  𝑞 𝑓 … 𝑓  𝑞 . Usually 𝑓 is associative. 

Example: if 𝑞 is the sequence of strings {“𝑎”, “𝑏”, “𝑐”} then 𝑟𝑒𝑑𝑢𝑐𝑒(++, 𝑞) is “𝑎𝑏𝑐”. A prettier way to 
write it is (++ : 𝑞), read “++ over 𝑞”. 

It’s often clearer to write 𝑓(𝑥) as 𝑥. 𝑓 to cut down on nested parentheses and because 𝑥. 𝑓. 𝑔 reads 
easily as “start with 𝑥, apply 𝑓, then apply 𝑔. 

If there are several terms in an expression with the same operator between them, such as 
𝑎 ∧ 𝑏 ∧ 𝑐 

it’s often easier to read if each term is on a separate line with an extra ∧ prefixed: 
∧ 𝑎
∧ 𝑏
∧ 𝑐 

A powerful tool to avoid recursion is transitive closure. It is tricky, so it’s fortunate that it isn’t needed 
very often, but it is needed for symbolic links in directories. If 𝑟 is a relation 𝐬𝐞𝐭 (𝑇, 𝑇) (which we often 
think of as a graph) then 𝑟. 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 is a relation that contains (𝑡 , 𝑡 ) iff there’s a sequence of 𝑇’s starting 
with 𝑡  and ending with 𝑡  such that 𝑟 relates every pair of neighbors: 

𝑟. 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 = 𝑡 , 𝑡  | ∃𝑞: 𝐬𝐞𝐪 𝑇 | 𝑞. ℎ𝑒𝑎𝑑 = 𝑡 ∧ 𝑞. 𝑙𝑎𝑠𝑡 = 𝑡 ∧ ∀𝑖 ∈ 𝑞. 𝑡𝑎𝑖𝑙. 𝑑𝑜𝑚, 𝑟(𝑞 , 𝑞 )  
Operationally, you can compute a finite closure 𝑟𝑐 iteratively one step at a time, starting with 𝑟𝑐 = 𝑟 

and adding {𝑡 , 𝑡 , 𝑡  | (𝑡 , 𝑡 ) ∈ 𝑟𝑐 ∧ (𝑡 , 𝑡 ) ∈ 𝑟𝑐 | (𝑡 , 𝑡 )} at each step until 𝑟𝑐 stops changing.  
Often we want to relate just the elements of some set 𝑠 and the “last” values that are related to them.  
𝑟.𝑓𝑟𝑖𝑛𝑔𝑒(𝑠:𝐬𝐞𝐭 𝑇) = {𝑡 , 𝑡  | 𝑡 ∈ 𝑠 ∧ 𝑟(𝑡 , 𝑡 ) ∧ ∀ 𝑡: 𝑇 | ¬𝑟(𝑡 , 𝑡)}  
If 𝑟 is a function 𝑓, 𝑓. 𝑐𝑙𝑜𝑠𝑢𝑟𝑒. 𝑓𝑟𝑖𝑛𝑔𝑒 is the fixed point, the result of applying 𝑓 repeatedly until the 

result doesn’t change. 
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Reliable two-party channel 

var  𝑐ℎ  : 𝐬𝐞𝐪 𝑀𝑠𝑔 channel 
 
𝑠𝑒𝑛𝑑(𝑚𝑠𝑔) = 𝑐ℎ ∶= 𝑐ℎ + + {𝑚𝑠𝑔} 
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑎𝑑𝑑𝑟) = 𝑚𝑠𝑔 = 𝑐ℎ . ℎ𝑒𝑎𝑑 →  𝑐ℎ ≔ 𝑐ℎ . 𝑡𝑎𝑖𝑙;  𝐫𝐞𝐭 𝑚𝑠𝑔  
The arrow → is implication. 
 
With crashes of sender or receiver some messages can be lost. This is non-deterministic, since we 

don’t say exactly which messages are lost (perhaps none). 
 
𝑐𝑟𝑎𝑠ℎ  = 𝐯𝐚𝐫 𝑘𝑒𝑒𝑝 ⊆ 𝑐ℎ. 𝑑𝑜𝑚; 𝑐ℎ ∶= 𝑘𝑒𝑒𝑝. 𝑠𝑜𝑟𝑡 ∘ 𝑐ℎ 

Async messaging 

The channel can drop (lose) a message any time, and can deliver the same message any number of 
times. 

 
type 𝑀𝑠𝑔 = (𝑓𝑟𝑜𝑚, 𝑡𝑜: 𝐴𝑑𝑑𝑟, 𝑏𝑜𝑑𝑦: 𝑆𝑡𝑟𝑖𝑛𝑔) message (packet) 
var  𝑐ℎ  :  𝐬𝐞𝐭 𝑀𝑠𝑔 channel 
 
𝑠𝑒𝑛𝑑(𝑚𝑠𝑔)  = 𝑐ℎ ∶= 𝑐ℎ ∪ {𝑚𝑠𝑔} 
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑎𝑑𝑑𝑟)  = 𝐯𝐚𝐫 𝑚𝑠𝑔 ∈ 𝑐ℎ| 𝑚𝑠𝑔. 𝑡𝑜 = 𝑎𝑑𝑑𝑟; 𝐫𝐞𝐭 𝑚𝑠𝑔 doesn’t drop from 𝑐ℎ 
 
The 𝑑𝑟𝑜𝑝 action is internal, and non-deterministic. 
𝑑𝑟𝑜𝑝(𝑚𝑠𝑔)  = 𝐯𝐚𝐫 𝑚𝑠𝑔 ∈ 𝑐ℎ;  𝑐ℎ ∶= 𝑐ℎ − {𝑚𝑠𝑔} can drop any time 

Files 

We describe just one file, and write just one byte at a time, to avoid fussy details about ranges. 
 
type 𝐹𝑖𝑙𝑒 = 𝐬𝐞𝐪 𝐵𝑦𝑡𝑒 
𝐯𝐚𝐫 𝑓 :   𝐹𝑖𝑙𝑒 
𝑟𝑒𝑎𝑑(𝑖)  = 𝐫𝐞𝐭 𝑓(𝑖) 
𝑤𝑟𝑖𝑡𝑒(𝑖, 𝑏) = 𝑓 ∶= 𝑓[𝑖 ∶= 𝑏] 𝑓 changes just at 𝑖 
 
Notation 
𝑐ℎ𝑜𝑜𝑠𝑒 selects one element from a set; which one is arbitrary but deterministic, that is, the same for 

the same set. If 𝑠is empty, 𝑠. 𝑐ℎ𝑜𝑜𝑠𝑒 = 𝑁𝑜𝑛𝑒 
𝑎𝑠𝐹𝑢𝑛 turns a set of pairs into a function, which returns 𝑁𝑜𝑛𝑒 for any argument that isn’t 𝑓𝑟𝑜𝑚 in 

some pair, otherwise the 𝑡𝑜 value in some such pair. 
 
𝐭𝐲𝐩𝐞 𝑃𝑎𝑖𝑟 = (𝑓𝑟𝑜𝑚: 𝑇1, 𝑡𝑜: 𝑇2) 
𝑎𝑠𝐹𝑢𝑛(𝑝𝑠: 𝐬𝐞𝐭 𝑃𝑎𝑖𝑟) = (𝐟𝐮𝐧 𝑡 ⟹ {𝑝 ∈ 𝑝𝑠 | 𝑝. 𝑓𝑟𝑜𝑚 = 𝑡}. 𝑐ℎ𝑜𝑜𝑠𝑒)  

                              
After a crash, any subset of the writes done since a 𝑠𝑦𝑛𝑐 survive. So the following spec is highly non-

deterministic: 
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𝐭𝐲𝐩𝐞 𝑁𝑒𝑤𝑉𝑎𝑙 = (𝑓𝑟𝑜𝑚: 𝑁𝑎𝑡, 𝑡𝑜: 𝐵𝑦𝑡𝑒) 
𝐯𝐚𝐫   𝑓 :   𝐹𝑖𝑙𝑒 copied from the basic spec 

𝑓𝑆𝑡𝑎𝑏𝑙𝑒  :   𝐹𝑖𝑙𝑒 as of the last 𝑠𝑦𝑛𝑐 
𝑛𝑒𝑤 :   𝐬𝐞𝐭 𝑁𝑒𝑤𝑉𝑎𝑙 writes not yet synced 

𝑟𝑒𝑎𝑑(𝑖)  = 𝐫𝐞𝐭 𝑓(𝑖) copied from the basic spec 
𝑤𝑟𝑖𝑡𝑒(𝑖, 𝑏) = 𝑓 ∶= 𝑓[𝑖 ∶= 𝑏]; 𝑛𝑒𝑤 ∶= 𝑛𝑒𝑤 ∪ {(𝑖, 𝑏)} new 𝑓 copied, write added to 𝑛𝑒𝑤 
𝑠𝑦𝑛𝑐() = 𝑓𝑆𝑡𝑎𝑏𝑙𝑒 ≔ 𝑓;  𝑛𝑒𝑤 ∶=  {} all the writes are in 𝑓𝑆𝑡𝑎𝑏𝑙𝑒 
𝑐𝑟𝑎𝑠ℎ() = 𝐯𝐚𝐫 𝑘𝑒𝑒𝑝 ⊆ 𝑛𝑒𝑤;  𝑓 ≔ 𝑓 + 𝑘𝑒𝑒𝑝. 𝑎𝑠𝐹𝑢𝑛 keep some of the writes 
 
Another way to say this is to keep track of all the possible post-crash files. This seems extravagant, 

since it makes lots of copies of the whole file, but there’s no notion of cost for a spec. You can see that 
it’s clearer and shorter. 

 
𝐯𝐚𝐫   𝑓 :   𝐹𝑖𝑙𝑒 copied from the basic spec 

𝑓𝑃𝑜𝑠𝑡 :   𝐬𝐞𝐭 𝐹𝑖𝑙𝑒 all possible post-crash files 
𝑤𝑟𝑖𝑡𝑒(𝑖, 𝑏) = 𝑓 ∶= 𝑓[𝑖 ∶= 𝑏]; 
     𝑓𝑃𝑜𝑠𝑡 ≔ 𝑓𝑃𝑜𝑠𝑡 ∪ {𝑓𝑝∈𝑓𝑃𝑜𝑠𝑡 | 𝑓𝑝[𝑖≔𝑏]} 
𝑠𝑦𝑛𝑐() = 𝑓𝑃𝑜𝑠𝑡 ≔ {𝑓} now only the current file 
𝑐𝑟𝑎𝑠ℎ() = 𝐯𝐚𝐫 𝑛𝑒𝑤𝐹 ∈ 𝑓𝑃𝑜𝑠𝑡, 𝑓 ≔ 𝑛𝑒𝑤𝐹  choose some possible file 
The choice of post-crash file is non-deterministic, so we can’t say 𝑓𝑃𝑜𝑠𝑡. 𝑐ℎ𝑜𝑜𝑠𝑒, because although 

that’s an arbitrary value from 𝑓𝑃𝑜𝑠𝑡 it’s a deterministic choice—𝑐ℎ𝑜𝑜𝑠𝑒 always makes the same choice 
from the same set, because only actions can be nondeterministic, not expressions. 

 
The spec for non-atomic writes is very similar. There’s a 𝑑𝑜𝑛𝑒 action which is much like 𝑠𝑦𝑛𝑐 for a 

set of single-byte writes (think of a multi-byte write from one thread) and a variable 𝑓𝐼𝑛𝐹𝑙𝑖𝑔ℎ𝑡 which 
gives all the file states that a concurrent thread could observe. It’s more complicated to spec several 
concurrent writes, because you have to keep track of which states survive a 𝑑𝑜𝑛𝑒 and which are interme-
diate states that are no longer visible. 

 
All that was spec, mostly for what happens after a crash. Now for some code, modeled on the standard 

Unix data structures, but abstracting the details of packing an inode onto the disk: 
 
type 𝐵𝑙𝑜𝑐𝑘 =  𝐬𝐞𝐪 𝐵𝑦𝑡𝑒 disk block (sector) 

𝐴𝑑𝑑𝑟 =  𝑁𝑎𝑡  disk address 
𝐼𝑁  = (𝑑𝑎𝑡𝑎: 𝐬𝐞𝐪 𝐴𝑑𝑑𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ: 𝑁𝑎t)  inode; ignore how it fits on disk 
𝐼𝑁𝑁  =  𝑁𝑎𝑡 inode number 
𝐹𝑐  =  𝐼𝑁𝑁 file in code is just an inode no 

var  𝑓𝑠 :   𝐹𝑐 → 𝐼𝑁 just the inodes 
d𝑖𝑠𝑘 :   𝐴𝑑𝑑𝑟 → 𝐵𝑙𝑜𝑐𝑘  

 
Abstraction function. The abstract and concrete state of a file are marked like this. You concatenate 

the contents of the disk blocks with 𝑟𝑒𝑑𝑢𝑐𝑒 and take the first 𝑓𝑐. 𝑙𝑒𝑛𝑔𝑡ℎ bytes. 

abs  𝒇  =  𝑟𝑒𝑑𝑢𝑐𝑒(𝑐𝑜𝑛𝑐𝑎𝑡, 𝑚𝑎𝑝(𝑑𝑖𝑠𝑘, 𝑓𝑠 𝒇𝒄 . 𝑑𝑎𝑡𝑎)) 0 . . 𝑓𝑠( 𝒇𝒄 ). 𝑙𝑒𝑛𝑔𝑡ℎ − 1  
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Directories 

The standard way to describe directories is to explain how to navigate from one directory to another 
in looking up a path name. Instead, this spec is in terms of the graph of directories. There’s no recursion. 

type 𝑁𝑜𝑑𝑒  = 𝐹𝑖𝑙𝑒 | 𝐷𝑖𝑟 
𝐿𝑖𝑛𝑘  = (𝑓𝑟𝑜𝑚, 𝑡𝑜: 𝑁𝑜𝑑𝑒, 𝑛𝑎𝑚𝑒: 𝑆𝑡𝑟𝑖𝑛𝑔)  node to node link 
𝐺 = 𝐬𝐞𝐭 𝐿𝑖𝑛𝑘 a whole directory graph 
𝑃𝑎𝑡ℎ  = 𝐬𝐞𝐪 𝐿𝑖𝑛𝑘 connected: 𝑝(𝑖). 𝑡𝑜 = 𝑝(𝑖 + 1). 𝑓𝑟𝑜𝑚  
𝑃𝑁 = 𝐬𝐞𝐪 𝑆𝑡𝑟𝑖𝑛𝑔 Path Name 

 
Computed values of 𝒈. These make sense for a graph in general, except for the parts about names. 
𝑛𝑜𝑑𝑒𝑠(𝑔) = 𝑚𝑎𝑝(𝑓𝑟𝑜𝑚, 𝑔). 𝑎𝑠𝑆𝑒𝑡 ∪  𝑚𝑎𝑝(𝑡𝑜, 𝑔). 𝑎𝑠𝑆𝑒𝑡  
A path is a connected sequence of links in 𝑔. If there are cycles this set is infinite. 
𝑝𝑎𝑡ℎ𝑠(𝑔) = {𝑝: 𝑃𝑎𝑡ℎ | 𝑝. 𝑎𝑠𝑆𝑒𝑡 ⊆ 𝑔 ∧ (∀ 𝑖 ∈ 𝑝. 𝑡𝑎𝑖𝑙. 𝑑𝑜𝑚, 𝑝(𝑖). 𝑡𝑜 = 𝑝(𝑖 + 1). 𝑓𝑟𝑜𝑚)}  
An acyclic path doesn’t visit the same node twice, so this set is finite if 𝑔 is. We don’t use this here.  
𝑎𝑃𝑎𝑡ℎ𝑠(𝑔) = {𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(𝑔) | (𝑝 ∘ 𝑡𝑜). 𝑠𝑒𝑡 ∪ 𝑝. ℎ𝑒𝑎𝑑. 𝑓𝑟𝑜𝑚 . 𝑠𝑖𝑧𝑒 = 𝑝. 𝑠𝑖𝑧𝑒 + 1 
The summary of a path is a link: 
𝑎𝑠𝐿𝑖𝑛𝑘(𝑝) = (𝑓𝑟𝑜𝑚 ≔ 𝑝. ℎ𝑒𝑎𝑑. 𝑓𝑟𝑜𝑚, 𝑡𝑜 ≔ 𝑝. 𝑙𝑎𝑠𝑡. 𝑡𝑜, 𝑛𝑎𝑚𝑒 ≔ 𝑚𝑎𝑝(𝑛𝑎𝑚𝑒, 𝑝). 𝑎𝑠𝑆𝑡𝑟𝑖𝑛𝑔) 
To give it a 𝑛𝑎𝑚𝑒 we need a way to turn a path name into a string and vice versa: 
𝑎𝑠𝑆𝑡𝑟𝑖𝑛𝑔(𝑝𝑛) = 𝑟𝑒𝑑𝑢𝑐𝑒 ++, (𝐟𝐮𝐧 𝑠 ⇒ 𝑠 + + “/”) . 𝑟𝑒𝑚𝑜𝑣𝑒𝐿𝑎𝑠𝑡 
𝑎𝑠𝑃𝑁(𝑠) = {𝑝𝑛 | 𝑝𝑛. 𝑎𝑠𝑆𝑡𝑟𝑖𝑛𝑔 = 𝑠}. 𝑐ℎ𝑜𝑜𝑠𝑒 the set should have just one element 
 
𝐭𝐲𝐩𝐞 𝐹𝑆 = (𝑔: 𝐺, 𝑟𝑜𝑜𝑡: 𝐷𝑖𝑟) File System 
var   𝑡𝐹𝑆 :   𝐹𝑆 the tree, without “.” and “..” 
𝑓𝑖𝑙𝑒𝑠(𝑓𝑠) = {𝑛 ∈ 𝑓𝑠. 𝑔. 𝑛𝑜𝑑𝑒𝑠 | 𝑛. 𝑡𝑦𝑝𝑒 = 𝐹𝑖𝑙𝑒}   
𝑝𝑎𝑡ℎ𝑠𝑇𝑜(𝑓𝑠, 𝑛) = {𝑝 ∈ 𝑓𝑠. 𝑔. 𝑝𝑎𝑡ℎ𝑠 | 𝑝. ℎ𝑒𝑎𝑑. 𝑓𝑟𝑜𝑚 = 𝑓𝑠. 𝑟𝑜𝑜𝑡 ∧ 𝑝. 𝑙𝑎𝑠𝑡. 𝑡𝑜 = 𝑛} 
 
These are the properties of the file system tree graph 𝑡𝐹𝑆. 𝑔. They are invariants that follow from all 

the transitions. Here 𝑔 and 𝑟𝑜𝑜𝑡 are short for 𝑡𝐹𝑆. 𝑔 and 𝑡𝐹𝑆. 𝑟𝑜𝑜𝑡: 𝐥𝐞𝐭 𝑔 = 𝑡𝐹𝑆. 𝑔, 𝑟𝑜𝑜𝑡 = 𝑡𝐹𝑆. 𝑟𝑜𝑜𝑡 𝐢𝐧 
All the links from a node have different names:  

∀ 𝑙 , 𝑙 ∈ 𝑔, (𝑙 . 𝑓𝑟𝑜𝑚 = 𝑙 . 𝑓𝑟𝑜𝑚) ⟹ 𝑙 . 𝑛𝑎𝑚𝑒 ≠ 𝑙 . 𝑛𝑎𝑚𝑒 
Only directories have outgoing links: 

∀ 𝑙 ∈ 𝑔, 𝑙. 𝑓𝑟𝑜𝑚. 𝑡𝑦𝑝𝑒 = 𝐷𝑖𝑟 
Only files have more than one incoming link: 

∀ 𝑛 ∈ 𝑔. 𝑛𝑜𝑑𝑒𝑠 − 𝑔. 𝑓𝑖𝑙𝑒𝑠, {𝑙 ∈ 𝑔 | 𝑙. 𝑡𝑜 = 𝑛}. 𝑠𝑖𝑧𝑒 ≤ 1 
The root has no incoming links: 

∀ 𝑙 ∈ 𝑔, 𝑙. 𝑡𝑜 ≠ 𝑟𝑜𝑜𝑡 
Every node is reachable from the root via some path, which is unique except for file nodes: 

∀ 𝑛 ∈ 𝑔. 𝑛𝑜𝑑𝑒𝑠 − {𝑟𝑜𝑜𝑡}, 𝐥𝐞𝐭 𝑝 = 𝑝𝑎𝑡ℎ𝑠𝑇𝑜(𝑛) 𝐢𝐧 𝑝 ≠ {} ∧ (𝑛. 𝑡𝑦𝑝𝑒 ≠ 𝐹𝑖𝑙𝑒 → 𝑝. 𝑠𝑖𝑧𝑒 = 1) 
It follows that the graph is a tree except for multiple paths to files. 
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Dot names. To describe the real file system we have to add “.” and “..”. Every non-file gets a “.” 
𝐿𝑖𝑛𝑘 to itself, and each one except the root gets a “..” link to its unique parent. 

𝑎𝑑𝑑𝐷𝑜𝑡𝑠(𝑓𝑠) = 𝐥𝐞𝐭 𝑑𝑠 = {𝑛 ∈ 𝑓𝑠. 𝑔. 𝑛𝑜𝑑𝑒𝑠 | 𝑛. 𝑡𝑦𝑝𝑒 = 𝐷𝑖𝑟} 𝐢𝐧  
    𝑓𝑠[𝑔 ≔ 𝑓𝑠. 𝑔 ∪ {𝑛 ∈ 𝑑𝑠 | (𝑛, 𝑛, “. ”)}  
                            ∪ {𝑛 ∈ 𝑑𝑠 − {𝑓𝑠. 𝑟𝑜𝑜𝑡} |  (𝑛, 𝑓𝑠. 𝑝𝑎𝑡ℎ𝑠𝑇𝑜(𝑛). 𝑙𝑎𝑠𝑡. 𝑓𝑟𝑜𝑚, “. . ”)}  

var  𝑑𝐹𝑆 = 𝑎𝑑𝑑𝐷𝑜𝑡𝑠(𝑡𝐹𝑆) 
 
Looking up file names. A 𝑝𝑛 that starts with the empty string corresponds to a file name that starts 

with “/”, and needs special treatment (first line). Then we look for a path that matches 𝑝𝑛, returning the 
node at the end of the path if there is one and 𝑁𝑜𝑛𝑒 otherwise. This doesn’t depend on any 𝐹𝑆 invariants 
except that names on outgoing links are unique, which ensures that 𝑝𝑠 is a singleton or empty. 

𝑙𝑜𝑜𝑘𝑢𝑝(𝑓𝑠, 𝑝𝑛: 𝑃𝑁, 𝑐𝑑: 𝐷𝑖𝑟): 𝐨𝐩𝐭𝐢𝐨𝐧 𝑁𝑜𝑑𝑒  
= 𝐥𝐞𝐭 𝑑  = 𝐢𝐟 𝑝𝑛. ℎ𝑒𝑎𝑑 = “” 𝐭𝐡𝐞𝐧 𝑓𝑠. 𝑟𝑜𝑜𝑡 𝐞𝐥𝐬𝐞 𝑐𝑑 𝐢𝐧  empty head → start with 𝑟𝑜𝑜𝑡, not 𝑐𝑑 
    𝐥𝐞𝐭 𝑝𝑠 = {𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(𝑓𝑠. 𝑔) |   
                     𝑝. ℎ𝑒𝑎𝑑. 𝑓𝑟𝑜𝑚 = 𝑑 ∧ 𝑚𝑎𝑝(𝑛𝑎𝑚𝑒, 𝑝) = 𝑝𝑛 in  
    𝐢𝐟 𝑝𝑠 ≠ {} 𝐭𝐡𝐞𝐧 𝑝𝑠. 𝑐ℎ𝑜𝑜𝑠𝑒. 𝑙𝑎𝑠𝑡. 𝑡𝑜 𝐞𝐥𝐬𝐞 𝑁𝑜𝑛𝑒  if there is a path return its last node 

 
Symbolic links are also in the real file system, and they are trickier. Since 𝑙𝑜𝑜𝑘𝑢𝑝 fails if it encoun-

ters an 𝑠𝐿𝑖𝑛𝑘, the idea is to resolve all the 𝑠𝐿𝑖𝑛𝑘’s whose targets can be resolved without traversing any 
𝑠𝐿𝑖𝑛𝑘 that hasn’t already been resolved. When an 𝑠𝐿𝑖𝑛𝑘 is resolved, all the links to it are replaced by 
links to the target. Since there are no links from it, it’s no longer part of 𝑔. 

What about the root? If it’s an 𝑠𝐿𝑖𝑛𝑘, there’s no link to it, so it doesn’t appear in 𝑜𝑙𝑑 or 𝑛𝑒𝑤 below. 
Its target becomes the new root. [[I wonder whether this is right?]] 

type 𝑁𝑜𝑑𝑒  = 𝐹𝑖𝑙𝑒 | 𝐷𝑖𝑟 | 𝑆𝐿𝑖𝑛𝑘 
𝑆𝐿𝑖𝑛𝑘 = 𝑆𝑡𝑟𝑖𝑛𝑔 

𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑓𝑠): 𝐹𝑆 = 𝐥𝐞𝐭 𝑔 = 𝑓𝑠. 𝑔, 𝑟𝑜𝑜𝑡 = 𝑓𝑠. 𝑟𝑜𝑜𝑡 𝐢𝐧 short names for 𝑔 and 𝑟𝑜𝑜𝑡 
𝐥𝐞𝐭 𝑡𝑔𝑡 = {𝑛 ∈ 𝑔. 𝑛𝑜𝑑𝑒𝑠 | 𝑛. 𝑡𝑦𝑝𝑒 = 𝑆𝐿𝑖𝑛𝑘 for each 𝑠𝐿𝑖𝑛𝑘 

  | (𝑓𝑟𝑜𝑚≔𝑛, 𝑡𝑜≔𝑓𝑠. 𝑙𝑜𝑜𝑘𝑢𝑝(𝑛. 𝑎𝑠𝑃𝑁, 𝑛))    look up the target name in 𝑓𝑠 
                                }. 𝑎𝑠𝐹𝑢𝑛 𝐢𝐧    and make 𝑠𝐿𝑖𝑛𝑘→𝑡𝑎𝑟𝑔𝑒𝑡 if it works 

𝐥𝐞𝐭 𝑜𝑙𝑑  = {𝑙 ∈ 𝑔     | 𝑙. 𝑡𝑜. 𝑡𝑔𝑡 ≠ 𝑁𝑜𝑛𝑒} 𝐢𝐧 the old links to resolved 𝑠𝐿𝑖𝑛𝑘s 
𝐥𝐞𝐭 𝑛𝑒𝑤 = {𝑙 ∈ 𝑜𝑙𝑑 | 𝑙[𝑡𝑜 ≔ 𝑙. 𝑡𝑜. 𝑡𝑔𝑡]}  𝐢𝐧 the new links to their targets 
𝑓𝑠[𝑔 ≔ (𝑔 − 𝑜𝑙𝑑) ∪ 𝑛𝑒𝑤, replace old links with resolved ones 
      𝑟𝑜𝑜𝑡 ≔ 𝐥𝐞𝐭 𝑟 = 𝑟𝑜𝑜𝑡. 𝑡𝑔𝑡 𝐢𝐧 and if the root was a resolved 𝑠𝐿𝑖𝑛𝑘 
                    𝐢𝐟 𝑟 ≠ 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑟 𝐞𝐥𝐬𝐞 𝑟𝑜𝑜𝑡 ]  make its target the new root 

Now we apply the transitive closure of the 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 relation (which is actually a function) to 𝑑𝐹𝑆 get 
the graph in which we actually want to look up file names: 

𝐯𝐚𝐫 𝑠𝐹𝑆 = 𝑟𝑒𝑠𝑜𝑙𝑣𝑒. 𝑎𝑠𝑅𝑒𝑙. 𝑐𝑙𝑜𝑠𝑢𝑟𝑒. 𝑓𝑟𝑖𝑛𝑔𝑒. 𝑎𝑠𝐹𝑢𝑛(𝑑𝐹𝑆) 
This terminates, because it resolves at least one 𝑠𝐿𝑖𝑛𝑘 at each step in computing the closure, and is done 
if it can’t do so. If there’s a cycle of target names, for example if the target of /a/b is /a/b/c, then the 
𝑠𝐿𝑖𝑛𝑘s that are part of such a cycle won’t get resolved by 𝑟𝑒𝑠𝑜𝑙𝑣𝑒. 

Once the links are resolved many of the invariants on 𝑡𝐹𝑆 no longer hold: there can be cyclic paths, 
multiple paths to directories, etc. But 𝑙𝑜𝑜𝑘𝑢𝑝 doesn’t depend on these invariants; it just follows 𝑝𝑛. 

Of course the code that handles 𝑠𝐿𝑖𝑛𝑘s in Unix doesn’t construct a 𝑠𝐹𝑆 in which all the links are 
resolved. Instead it follows the path given by 𝑝𝑛, and when it comes to an 𝑠𝐿𝑖𝑛𝑘 named 𝑠𝑙 with target 
𝑡𝑔𝑡, it starts looking up 𝑡𝑔𝑡 ++ 𝑝𝑛′, where 𝑝𝑛 = 𝑠𝑙 ++ 𝑝𝑛′. If there’s a cycle this won’t terminate, so 
there needs to be an explicit check for revisiting the same 𝑠𝐿𝑖𝑛𝑘 or a bound on the number followed. 
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Excerpts from the Amazon paper 

Some of the more subtle, dangerous bugs turn out to be errors in design; the code faithfully imple-
ments the intended design, but the design fails to correctly handle a particular ‘rare’ scenario. 

All models are wrong, some are useful. 
We needed to be able to capture the essence of a design in a few hundred lines of precise description. 

We found what we were looking for in TLA+. A TLA+ specification describes the set of all possible 
legal behaviors (execution traces) of a system. 

The TLC model checker [5], a tool which takes a TLA+ specification and exhaustively checks the 
desired correctness properties across all of the possible execution traces. 

Our experience with TLA+ has shown that perception to be quite wrong. So far we have used TLA+ 
on 10 large complex real-world systems. In every case TLA+ has added significant value, either finding 
subtle bugs that we are sure we would not have found by other means, or giving us enough understanding 
and confidence to make aggressive performance optimizations without sacrificing correctness. 

We specify the effects of each of those possible events; e.g. network errors and repairs, disk errors, 
process crashes and restarts, data center failures and repairs, and actions by human operators. 

All production services at Amazon are under constant development: new features, increases in scale, 
removing bottlenecks. Many of these changes are complex, and they must be made to the running system 
with no downtime. 

Spec is also an excellent form of documentation, very important as our systems have unbounded 
lifetime. 

Exhaustively testable pseudo-code. 
We have adopted the practice of first writing a conventional prose design document, then incremen-

tally refining parts of it into PlusCal or TLA+. Often this gives important insights without ever going as 
far as a full specification or model checking. 

“How do we know that the executable code correctly implements the verified design?” The answer 
is that we don’t. Despite this, formal methods help in multiple ways: 

 Get the design right. 
 Gain a better understanding of the design. 
 Find strong invariants 
The designer must ensure that the model captures the significant aspects of the real system. Achieving 

this is a difficult skill, the acquisition of which requires thoughtful practice. Also, we were solely con-
cerned with obtaining practical benefits in our particular problem domain. 

What is formal specification is not good for? Surprising ‘sustained emergent performance degrada-
tion’. 

 
 


