
 Lecture 4 notes

Butler Lampson

6.826

September 10, 2020

The paper is

Everest: Towards a Verified, Drop-in Replacement of HTTPS, 2nd Summit on Advances in

Programming Languages (SNAPL), Asilomar, May 2017

The problem: current network security code (SSL/TLS) is insecure

SSL/TLS uses on the Internet:

Browser-server security

Most other connections

54 TLS vulnerabilities in a typical year

Major flaws: Heartbleed, FREAK, Logjam

Heartbleed: buffer overrun from mishandled length field in added message

FREAK: allow old, weak crypto for compatibility

Logjam: precompute tables to make it faster to find discrete logs

How serious is it?

Hunters and bear

Threat model: MiM makes it much harder; weak defaults make it harder

Worst case: just send a bad message. Now everyone is vulnerable

Contrast # vulnerable with press

Intelligence: ideal is invisible, permanent leak, even if slow

Finance: can lose billions, from bitcoin hacks or compromised credentials (Bangladesh)

Shopping

Everest

Client: Browser Server: Amazon

HTTPS

TLS

OS

Hardware: CPU NIC

. Network

TCB: Everything except the network and NIC

Later we’ll talk about how to get the OS out of the TCB with enclaves

Why is this interesting? You have less control in network

Everest: make HTTPS/TLS secure

Still depend on OS, hardware

Depend on crypto algorithms

Search for “Everest project” to find the Microsoft Research and Github pages.

Everest today: many parts

• F*, a verification language for effectful programs
• miTLS, reference implementation of the TLS protocol in F*
• KreMLin, a compiler from a subset of F* to C
• HACL*, a verified library of cryptographic primitives written in F*
• Vale, a domain-specific language for verified cryptographic primitives in assembly
• EverCrypt, a verified crypto provider with an agile, multi-platform, self-configuring cryptographic API.
• EverParse, automatically generates verified parsers and serializers for binary data formats

https://fstar-lang.org/
https://mitls.org/
https://fstar-lang.org/
https://github.com/FStarLang/kremlin
https://fstar-lang.org/
https://github.com/mitls/hacl-star
https://fstar-lang.org/
https://github.com/project-everest/vale
https://hacl-star.github.io/HaclValeEverCrypt.html
https://project-everest.github.io/everparse

The hope: definitively solve this problem

Challenges:

Correctness

Deployment

Approach:

Write specs, code in F*: Coq – tactics + SMT solver (now adding tactics)

Code in Low* ⊆ F*: Erase fancy stuff, extract to C, compile with …

Proof in F*

Vale for verified assembly code

Could it work? In real life? Against academic attacks?

Fisher K, Launchbury J, Richards R. 2017

The HACMS program: using formal methods to eliminate exploitable bugs.

Phil. Trans. R. Soc. A 375, 2017

Correctness for TLS

Spec: 𝑠𝑜𝑐𝑘𝑒𝑡 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑡𝑜:string, 𝑢𝑠𝑖𝑛𝑔:cryptoParameters)

ha, ha: Georgiev et al. The most dangerous code in the world, 2012

Proof: In F*

Dependencies: What to worry about after F* says PROVED

spec, F*, certs, CPU semantics, OS

Dangerous code

Don’t hack code to disable validation for testing

Don’t take defaults; specify what you want

Test aggressively—certificates are complicated

Crypto

Primitives

 𝑑𝑒𝑐𝐾 (𝑒𝑛𝑐𝐾 (𝑚)) = 𝑚 and 𝑑𝑒𝑐 (anything else) = 𝑒𝑟𝑟𝑜𝑟

𝑣𝑒𝑟𝑖𝑓𝑦𝐾(𝑠𝑖𝑔𝑛𝐾−1(𝑚)) = 𝑡𝑟𝑢𝑒 and 𝑣𝑒𝑟𝑖𝑓𝑦(anything else) = 𝑒𝑟𝑟𝑜𝑟

This is ideal crypto. Real crypto delivers this with

some probability 1 − 𝜖, and

except for one-time pads, some risk that hard problems get solved

such as factoring, discrete log, or multi-round jumbling

Build this for arbitrary messages from basic algorithms

These do one block or add one block to a MAC

These have mathematical specs

Performance is important

State of the art for data: .8 cycles/byte

Achieved by best OpenSSL code, and by Evercrypt

Side channels

Because the spec is not complete.

Abstractions don’t keep secrets; they leak

If you worry about side channels, don’t share resources

Timing dependent: E avoids this

Speculative

Radiation: EM, acoustic

Power

…

Crypto protocol

Key exchange: DH gives you a shared secret 𝐾𝐷𝐻, but you don’t know with whom

Authentication: keys speak for principals, 𝐾 ⇒ 𝑃

cert says 𝐾 ⇒ 𝑠𝑡𝑟𝑖𝑛𝑔 (hostname) e.g., amazon.com

cert is 𝑠𝑖𝑔𝑛𝐾verisign
(𝐾𝑎𝑧 ⇒ amazon.com)

𝑣𝑒𝑟𝑖𝑓𝑦𝐾(𝐾𝐷𝐻 ⇒ 𝐾 at time 𝑡)

Certs are complicated: many features, complex encoding

Cert chains are even more complicated

Many options for

Legacy

Performance

“Convenience”

Parsing

Want parser and serializer like crypto: 𝑝(𝑠(𝑚)) = 𝑚 and 𝑝(anything else) = 𝑒𝑟𝑟𝑜𝑟

With complex formats, lots of chances for bugs

Especially when you are going to sign (a hash of) 𝑠.

You have 𝐾 says 𝑠(𝑚) and you want ℎ𝑜𝑠𝑡 says 𝑚

Everparse: Verified parsers for binary formats

TLS

Handshake: set up and authenticate keys

Record protocol: transmit data

Handshake idea

Negotiate crypto parameters: Algorithm, key lengths, …

Use Diffie-Hellman to get a shared master key 𝐾master

Authenticate a host identity key: 𝐾host ⇒ ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒

Using certificates

Authenticate the whole: 𝑠𝑖𝑔𝑛𝐾host
(𝐾master, 𝑐𝑟𝑦𝑝𝑡𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

Many complications for legacy, efficiency, rekeying, …

Record protocol

Encrypt record with 𝐾, send it through network, decrypt and authenticate with 𝐾.

HTTPS

Delivers good pages to browser client.

Need to call TLS correctly

Notes

Game-playing proofs of security

TLS 1.3 record layer in Low*

F*, a dependently typed language for programming, meta-programming, and proving at a high level

Low* -> C via Kremlin

Vale for verified assembly

Performance and, sometimes, side channel resistance

We compile all our code to source-like C and assembly

After verification, in support of incremental deployment, our code is extracted by verified tools to C and assembly,

and compiled further by off-the-shelf C compilers (e.g., gcc and clang, but also, at a performance cost, verified

compilers like CompCert [18]) and composed with adapters that interface our verified code with existing software

components, like the web browsers, servers and other communication software shown in the Figure 1

Details

From the Github header

Project Everest is the combination of the following projects. Read below for an easy way to install all these projects
together.

• F*, a verification language for effectful programs

• miTLS, reference implementation of the TLS protocol in F*
• KreMLin, a compiler from a subset of F* to C
• HACL*, a verified library of cryptographic primitives written in F*
• Vale, a domain-specific language for verified cryptographic primitives in assembly
• EverCrypt, a verified crypto provider that combines HACL* and Vale via an agile, multi-platform, self-config-
uring cryptographic API.
• EverParse, a library and tool to automatically generate verified parsers and serializers for binary data for-
mats

https://fstar-lang.org/
https://mitls.org/
https://fstar-lang.org/
https://github.com/FStarLang/kremlin
https://fstar-lang.org/
https://github.com/mitls/hacl-star
https://fstar-lang.org/
https://github.com/project-everest/vale
https://hacl-star.github.io/HaclValeEverCrypt.html
https://github.com/mitls/hacl-star
https://github.com/project-everest/vale
https://project-everest.github.io/everparse

When combined together, the projects above generate a mixture of C and assembly code that implements TLS 1.3,
with proofs of safety, correctness, security and various forms of side-channel resistance.

Everest is a work in progress. We generate C and assembly code for TLS-1.3, but the verification is not complete.

• The TLS 1.3 handshake verification is a work in progress

• We have completed verification of the TLS 1.3 record layer; it currently extracts to C.

• Several cryptographic assembly routines, including AES-GCM, Poly1305, AES and SHA2, are verified and
extract to assembly via Vale. (USENIX-17, POPL-19)

• HACL* provides verified C code for multiple other primitives such as Curve25519, Chacha20, Poly1305 or
HMAC.

• Everest code is deployed in several contexts.

• Code from the HACL* crypto library and EverCrypt crypto provider is deployed in Mozilla Firefox,
the Wireguard VPN, the upcoming Zinc crypto library for the Linux kernel, the MirageOS unikernel, and in
the Tezos and Concordium blockchains.

• The miTLS protocol stack powers Microsoft’s primary implementation of the QUIC transport protocol.

Crypto

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Blocks are numbered sequentially, and then this block number is combined with an initialization vector (IV) and en-

crypted with a block cipher E, usually AES. The result of this encryption is then XORed with the plaintext to produce

the ciphertext. The ciphertext blocks are considered coefficients of a polynomial which is then evaluated at a key-

dependent point H, using finite field arithmetic. The result is then encrypted, producing an authentication tag that can

be used to verify the integrity of the data. The encrypted text then contains the IV, ciphertext, and authentication tag.

https://eprint.iacr.org/2016/1178
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-bond.pdf
https://www.microsoft.com/en-us/research/publication/a-verified-efficient-embedding-of-a-verifiable-assembly-language/
https://github.com/mitls/hacl-star
https://github.com/mitls/hacl-star
https://hacl-star.github.io/HaclValeEverCrypt.html
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://www.wireguard.com/
https://lwn.net/Articles/770750/
https://mirage.io/
https://www.reddit.com/r/tezos/comments/8hrsz2/tezos_switches_cryptographic_libraries_from
https://www.concordium.com/
https://mitls.org/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Bitwise_XOR
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Finite_field_arithmetic

Impressive performance results are published for GCM on a number of platforms. Käsper and Schwabe de-
scribed a "Faster and Timing-Attack Resistant AES-GCM"[13] that achieves 10.68 cycles per byte AES-GCM
authenticated encryption on 64-bit Intel processors. Dai et al. report 3.5 cycles per byte for the same algo-
rithm when using Intel's AES-NI and PCLMULQDQ instructions. Shay Gueron and Vlad Krasnov achieved
2.47 cycles per byte on the 3rd generation Intel processors. Appropriate patches were prepared for
the OpenSSL and NSS libraries.[14]

Vale paper:

Altogether, counting comments and white space, our verified AES-GCM implementation requires 339

lines of specification, 2020 lines of proof libraries, 73 Vale procedures, over 1100 lines of Low⋆ code,

and more than 4400 lines of Vale code.

 AES-GCM-128 AES-GCM-256

OpenSSL (SIMD, AESNI/PCLMULQDQ) 6414 4730

Vale/F⋆ (SIMD, AESNI/PCLMULQDQ) 991 935

But the Evercrypt paper shows almost equal performance for the “targeted” AEAD at about .8 cycles/byte. This

is not the limiting factor for performance of TLS or QUIC.

Parsing

EverParse yields efficient zero-copy implementations, usable both in F* and in C.We evaluate it in practice by

fully implementing the message formats of the Transport Layer Security standard and its extensions (TLS 1.0–

1.3, 293 datatypes) and by integrating them into MITLS, an F* implementation of TLS. We illustrate its generality

by implementing the Bitcoin block and transaction formats, and the ASN.1 DER payload of PKCS #1 RSA sig-

natures.

Because they are directly exposed to adversarial inputs, parsers are often among the most vulnerable components

of security applications. … When parsing is on the critical path of an application’s performance … developers

may be forced to write and maintain their own parsers and serializers in low-level unsafe languages like C.

Nonmalleable: valid messages have unique representations.

Cryptographic mechanisms provide (serialized) byte string authentication, whereas applications rely on (parsed)

message authentication. Hence, correctness and runtime safety are not sufficient to preserve authentication: a

correct parser may accept inputs outside the range of the serializer, or multiple serializations of the same message,

which may lead to subtle, and sometimes devastating, vulnerabilities.

A parser is correct with respect to a serializer when it yields back any formatted message: :∀𝑚 ∈ 𝒱 ∣ 𝑝(𝑠(𝑚)) =

𝑚, and exact when it accepts only serialized messages: 𝑝−1(𝒱) = 𝑠(𝒱). Parsers may also be considered on their

own. A parser is non-malleable (or injective) when it accepts at most one binary representation of each message:

∀𝑥, 𝑦 ∈ {0,1}∗ ∣ 𝑝(𝑥) = 𝑝(𝑦) ⇒ (𝑥 = 𝑦 ∨ 𝑝(𝑥) =⊥), and complete (or surjective) when it accepts at least one

binary representation of each message:𝑝({0,1}∗) \ {⊥} = 𝒱. If p is a non-malleable parser for V , then 𝑝−1is a

serializer over 𝑝({0,1}∗) \ {⊥}.

Heartbleed (which is estimated to have affected up to 55% of the top internet websites [17]) is a simple buffer

overrun caused by improper validation of the length field in the TLS messages defined in OpenSSL’s implemen-

tation of the heartbeat protocol extension.

PKCS #1 v1.5 defines a standard for hashing and padding the message to sign: given an arbitrary message 𝑚, it

is first hashed into a digest ℎ, then stored together with the identifier 𝑎 of the hash algorithm. The signature is

𝜎 = 𝑅𝑆𝐴((𝑎, ℎ) + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔). There’s padding, and if the parser doesn’t check that it’s right, there are lots of

(𝑎, ℎ) such that

https://en.wikipedia.org/wiki/Timing_attack
https://en.wikipedia.org/wiki/Galois/Counter_Mode#cite_note-13
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Network_Security_Services
https://en.wikipedia.org/wiki/Galois/Counter_Mode#cite_note-14

F*

We aim for a language that spans the capabilities of interactive proof assistants like Coq, general-purpose pro-

gramming languages like OCaml and Haskell, and SMT-backed semiautomated program verification tools like

Dafny. This language would provide the nearly arbitrary expressive power of a logic like Coq’s, but with a richer,

effectful dynamic semantics. It would provide the flexibility to mix SMT-based automation with interactive

proofs when the SMT solver times out.

Scripting proofs using tactics and metaprogramming: properties of pure programs are specified in expressive

higher-order (and often dependently typed) logics, and proofs are conducted using various imperative program-

ming languages.

Along a different axis, program verifiers like Dafny target both pure and effectful programs. They work primarily

by computing verification conditions (VCs) from programs, usually relying on annotations such as pre- and post-

conditions, and encoding them to automated theorem provers (ATPs) such as satisfiability modulo theories (SMT)

solvers.

Meta-F* is a framework that allows F* users to manipulate VCs using tactics. More generally, it supports met-

aprogramming, allowing programmers to script the construction of programs, by manipulating their syntax and

customizing the way they are type-checked.

Refinement types: 𝑥: 𝑡{𝜙} is the type of all 𝑥 of type 𝑡 such that (𝜆𝑥 ∣ 𝜙)(𝑥).

One verification method that has eluded F* until now is separation logic, the main reason being that the pervasive

“frame rule” requires instantiating existentially quantified heap variables, which is a challenge for SMT solvers,

and simply too tedious for users.

