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The paper is 

Everest: Towards a Verified, Drop-in Replacement of HTTPS, 2nd Summit on Advances in 

Programming Languages (SNAPL), Asilomar, May 2017 

 



The problem: current network security code (SSL/TLS) is insecure 

SSL/TLS uses on the Internet:  

Browser-server security 

Most other connections 

 

54 TLS vulnerabilities in a typical year 

 

Major flaws: Heartbleed, FREAK, Logjam 

Heartbleed: buffer overrun from mishandled length field in added message 

FREAK: allow old, weak crypto for compatibility 

Logjam: precompute tables to make it faster to find discrete logs 

 

How serious is it? 

Hunters and bear 

Threat model: MiM makes it much harder; weak defaults make it harder 

Worst case: just send a bad message. Now everyone is vulnerable 

 

Contrast # vulnerable with press 

 

Intelligence: ideal is invisible, permanent leak, even if slow 

Finance: can lose billions, from bitcoin hacks or compromised credentials (Bangladesh) 

Shopping 



Everest 

Client: Browser Server: Amazon 

HTTPS 

TLS 

OS 

Hardware: CPU  NIC 

.    Network  

 

TCB: Everything except the network and NIC 

Later we’ll talk about how to get the OS out of the TCB with enclaves 

Why is this interesting? You have less control in network 

 

Everest: make HTTPS/TLS secure 

Still depend on OS, hardware 

Depend on crypto algorithms 

 

Search for “Everest project” to find the Microsoft Research and Github pages. 

Everest today: many parts 

• F*, a verification language for effectful programs 
• miTLS, reference implementation of the TLS protocol in F* 
• KreMLin, a compiler from a subset of F* to C 
• HACL*, a verified library of cryptographic primitives written in F* 
• Vale, a domain-specific language for verified cryptographic primitives in assembly 
• EverCrypt, a verified crypto provider with an agile, multi-platform, self-configuring cryptographic API. 
• EverParse, automatically generates verified parsers and serializers for binary data formats 

 

https://fstar-lang.org/
https://mitls.org/
https://fstar-lang.org/
https://github.com/FStarLang/kremlin
https://fstar-lang.org/
https://github.com/mitls/hacl-star
https://fstar-lang.org/
https://github.com/project-everest/vale
https://hacl-star.github.io/HaclValeEverCrypt.html
https://project-everest.github.io/everparse


The hope: definitively solve this problem 

Challenges: 

Correctness 

Deployment 

 

Approach: 

Write specs, code in F*: Coq – tactics + SMT solver (now adding tactics) 

Code in Low* ⊆ F*: Erase fancy stuff, extract to C, compile with … 

Proof in F* 

Vale for verified assembly code 

 

Could it work? In real life? Against academic attacks? 

 

Fisher K, Launchbury J, Richards R. 2017  

The HACMS program: using formal methods to eliminate exploitable bugs.  

Phil. Trans. R. Soc. A 375, 2017 



Correctness for TLS 

Spec: 𝑠𝑜𝑐𝑘𝑒𝑡 =  𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑡𝑜:string, 𝑢𝑠𝑖𝑛𝑔:cryptoParameters)     

ha, ha: Georgiev et al. The most dangerous code in the world, 2012 

 

Proof: In F* 

 

Dependencies: What to worry about after F* says PROVED 

spec, F*, certs, CPU semantics, OS 

 

 

Dangerous code 

Don’t hack code to disable validation for testing 

Don’t take defaults; specify what you want 

Test aggressively—certificates are complicated 

  



Crypto 

Primitives 

   𝑑𝑒𝑐𝐾    (𝑒𝑛𝑐𝐾     (𝑚)) = 𝑚  and 𝑑𝑒𝑐      (anything else) = 𝑒𝑟𝑟𝑜𝑟 

𝑣𝑒𝑟𝑖𝑓𝑦𝐾(𝑠𝑖𝑔𝑛𝐾−1(𝑚)) = 𝑡𝑟𝑢𝑒  and 𝑣𝑒𝑟𝑖𝑓𝑦(anything else) = 𝑒𝑟𝑟𝑜𝑟 

 

This is ideal crypto. Real crypto delivers this with  

some probability 1 − 𝜖, and  

except for one-time pads, some risk that hard problems get solved 

such as factoring, discrete log, or multi-round jumbling 

 

Build this for arbitrary messages from basic algorithms  

These do one block or add one block to a MAC 

These have mathematical specs 

 

Performance is important 

State of the art for data: .8 cycles/byte 

Achieved by best OpenSSL code, and by Evercrypt 



Side channels 

Because the spec is not complete.  

Abstractions don’t keep secrets; they leak 

If you worry about side channels, don’t share resources 

 

Timing dependent: E avoids this 

Speculative 

 

Radiation: EM, acoustic 

Power 

… 



Crypto protocol 

Key exchange: DH gives you a shared secret 𝐾𝐷𝐻, but you don’t know with whom 

 

Authentication: keys speak for principals, 𝐾 ⇒ 𝑃 

cert says 𝐾 ⇒ 𝑠𝑡𝑟𝑖𝑛𝑔 (hostname)   e.g., amazon.com 

cert is 𝑠𝑖𝑔𝑛𝐾verisign
(𝐾𝑎𝑧 ⇒ amazon.com) 

𝑣𝑒𝑟𝑖𝑓𝑦𝐾(𝐾𝐷𝐻 ⇒ 𝐾 at time 𝑡)  

Certs are complicated: many features, complex encoding 

Cert chains are even more complicated 

 

Many options for  

Legacy 

Performance 

“Convenience” 



Parsing 

Want parser and serializer like crypto:    𝑝(𝑠(𝑚)) = 𝑚 and 𝑝(anything else) = 𝑒𝑟𝑟𝑜𝑟 

With complex formats, lots of chances for bugs 

Especially when you are going to sign (a hash of) 𝑠. 

You have 𝐾 says 𝑠(𝑚) and you want ℎ𝑜𝑠𝑡 says 𝑚 

 

Everparse: Verified parsers for binary formats 



TLS 

Handshake: set up and authenticate keys 

Record protocol: transmit data 

 

Handshake idea 

Negotiate crypto parameters: Algorithm, key lengths, … 

Use Diffie-Hellman to get a shared master key 𝐾master 

Authenticate a host identity key: 𝐾host ⇒ ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒 

Using certificates 

Authenticate the whole: 𝑠𝑖𝑔𝑛𝐾host
(𝐾master, 𝑐𝑟𝑦𝑝𝑡𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

 

Many complications for legacy, efficiency, rekeying, … 

Record protocol 

Encrypt record with 𝐾, send it through network, decrypt and authenticate with 𝐾. 

 

HTTPS 

Delivers good pages to browser client. 

 

Need to call TLS correctly 

 

 

 



Notes 

Game-playing proofs of security 

TLS 1.3 record layer in Low* 

F*, a dependently typed language for programming, meta-programming, and proving at a high level 

Low* -> C via Kremlin 

Vale for verified assembly 

Performance and, sometimes, side channel resistance 

We compile all our code to source-like C and assembly 

 

 

After verification, in support of incremental deployment, our code is extracted by verified tools to C and assembly, 

and compiled further by off-the-shelf C compilers (e.g., gcc and clang, but also, at a performance cost, verified 

compilers like CompCert [18]) and composed with adapters that interface our verified code with existing software 

components, like the web browsers, servers and other communication software shown in the Figure 1 

 

 
 

Details 

From the Github header 

Project Everest is the combination of the following projects. Read below for an easy way to install all these projects 
together. 

• F*, a verification language for effectful programs 

• miTLS, reference implementation of the TLS protocol in F* 
• KreMLin, a compiler from a subset of F* to C 
• HACL*, a verified library of cryptographic primitives written in F* 
• Vale, a domain-specific language for verified cryptographic primitives in assembly 
• EverCrypt, a verified crypto provider that combines HACL* and Vale via an agile, multi-platform, self-config-
uring cryptographic API. 
• EverParse, a library and tool to automatically generate verified parsers and serializers for binary data for-
mats 

https://fstar-lang.org/
https://mitls.org/
https://fstar-lang.org/
https://github.com/FStarLang/kremlin
https://fstar-lang.org/
https://github.com/mitls/hacl-star
https://fstar-lang.org/
https://github.com/project-everest/vale
https://hacl-star.github.io/HaclValeEverCrypt.html
https://github.com/mitls/hacl-star
https://github.com/project-everest/vale
https://project-everest.github.io/everparse


When combined together, the projects above generate a mixture of C and assembly code that implements TLS 1.3, 
with proofs of safety, correctness, security and various forms of side-channel resistance. 

Everest is a work in progress. We generate C and assembly code for TLS-1.3, but the verification is not complete. 

• The TLS 1.3 handshake verification is a work in progress 

• We have completed verification of the TLS 1.3 record layer; it currently extracts to C. 

• Several cryptographic assembly routines, including AES-GCM, Poly1305, AES and SHA2, are verified and 
extract to assembly via Vale. (USENIX-17, POPL-19) 

• HACL* provides verified C code for multiple other primitives such as Curve25519, Chacha20, Poly1305 or 
HMAC. 

• Everest code is deployed in several contexts. 

• Code from the HACL* crypto library and EverCrypt crypto provider is deployed in Mozilla Firefox, 
the Wireguard VPN, the upcoming Zinc crypto library for the Linux kernel, the MirageOS unikernel, and in 
the Tezos and Concordium blockchains. 

• The miTLS protocol stack powers Microsoft’s primary implementation of the QUIC transport protocol. 

Crypto 

https://en.wikipedia.org/wiki/Galois/Counter_Mode  

 
Blocks are numbered sequentially, and then this block number is combined with an initialization vector (IV) and en-

crypted with a block cipher E, usually AES. The result of this encryption is then XORed with the plaintext to produce 

the ciphertext. The ciphertext blocks are considered coefficients of a polynomial which is then evaluated at a key-

dependent point H, using finite field arithmetic. The result is then encrypted, producing an authentication tag that can 

be used to verify the integrity of the data. The encrypted text then contains the IV, ciphertext, and authentication tag. 

 

https://eprint.iacr.org/2016/1178
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-bond.pdf
https://www.microsoft.com/en-us/research/publication/a-verified-efficient-embedding-of-a-verifiable-assembly-language/
https://github.com/mitls/hacl-star
https://github.com/mitls/hacl-star
https://hacl-star.github.io/HaclValeEverCrypt.html
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://www.wireguard.com/
https://lwn.net/Articles/770750/
https://mirage.io/
https://www.reddit.com/r/tezos/comments/8hrsz2/tezos_switches_cryptographic_libraries_from
https://www.concordium.com/
https://mitls.org/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Bitwise_XOR
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Finite_field_arithmetic


Impressive performance results are published for GCM on a number of platforms. Käsper and Schwabe de-
scribed a "Faster and Timing-Attack Resistant AES-GCM"[13] that achieves 10.68 cycles per byte AES-GCM 
authenticated encryption on 64-bit Intel processors. Dai et al. report 3.5 cycles per byte for the same algo-
rithm when using Intel's AES-NI and PCLMULQDQ instructions. Shay Gueron and Vlad Krasnov achieved 
2.47 cycles per byte on the 3rd generation Intel processors. Appropriate patches were prepared for 
the OpenSSL and NSS libraries.[14] 
 

Vale paper: 

Altogether, counting comments and white space, our verified AES-GCM implementation requires 339 

lines of specification, 2020 lines of proof libraries, 73 Vale procedures, over 1100 lines of Low⋆ code, 

and more than 4400 lines of Vale code. 

 

 AES-GCM-128 AES-GCM-256 

OpenSSL (SIMD, AESNI/PCLMULQDQ)  6414 4730 

Vale/F⋆ (SIMD, AESNI/PCLMULQDQ)  991 935 

But the Evercrypt paper shows almost equal performance for the “targeted” AEAD at about .8 cycles/byte. This 

is not the limiting factor for performance of TLS or QUIC. 

 

Parsing 

EverParse yields efficient zero-copy implementations, usable both in F* and in C.We evaluate it in practice by 

fully implementing the message formats of the Transport Layer Security standard and its extensions (TLS 1.0–

1.3, 293 datatypes) and by integrating them into MITLS, an F* implementation of TLS. We illustrate its generality 

by implementing the Bitcoin block and transaction formats, and the ASN.1 DER payload of PKCS #1 RSA sig-

natures. 

 

Because they are directly exposed to adversarial inputs, parsers are often among the most vulnerable components 

of security applications. … When parsing is on the critical path of an application’s performance … developers 

may be forced to write and maintain their own parsers and serializers in low-level unsafe languages like C. 

Nonmalleable: valid messages have unique representations. 

 

Cryptographic mechanisms provide (serialized) byte string authentication, whereas applications rely on (parsed) 

message authentication. Hence, correctness and runtime safety are not sufficient to preserve authentication: a 

correct parser may accept inputs outside the range of the serializer, or multiple serializations of the same message, 

which may lead to subtle, and sometimes devastating, vulnerabilities. 

A parser is correct with respect to a serializer when it yields back any formatted message: :∀𝑚 ∈ 𝒱 ∣ 𝑝(𝑠(𝑚)) =

𝑚, and exact when it accepts only serialized messages: 𝑝−1(𝒱) = 𝑠(𝒱). Parsers may also be considered on their 

own. A parser is non-malleable (or injective) when it accepts at most one binary representation of each message: 

∀𝑥, 𝑦 ∈ {0,1}∗ ∣ 𝑝(𝑥) =  𝑝(𝑦) ⇒ (𝑥 = 𝑦 ∨  𝑝(𝑥) =⊥), and complete (or surjective) when it accepts at least one 

binary representation of each message:𝑝({0,1}∗) \ {⊥} = 𝒱. If p is a non-malleable parser for V , then 𝑝−1is a 

serializer over 𝑝({0,1}∗) \ {⊥}. 

 

Heartbleed (which is estimated to have affected up to 55% of the top internet websites [17]) is a simple buffer 

overrun caused by improper validation of the length field in the TLS messages defined in OpenSSL’s implemen-

tation of the heartbeat protocol extension. 

 

PKCS #1 v1.5 defines a standard for hashing and padding the message to sign: given an arbitrary message 𝑚, it 

is first hashed into a digest ℎ, then stored together with the identifier 𝑎 of the hash algorithm. The signature is 

𝜎 = 𝑅𝑆𝐴((𝑎, ℎ) + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔). There’s padding, and if the parser doesn’t check that it’s right, there are lots of 

(𝑎, ℎ) such that  

https://en.wikipedia.org/wiki/Timing_attack
https://en.wikipedia.org/wiki/Galois/Counter_Mode#cite_note-13
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Network_Security_Services
https://en.wikipedia.org/wiki/Galois/Counter_Mode#cite_note-14


F* 

We aim for a language that spans the capabilities of interactive proof assistants like Coq, general-purpose pro-

gramming languages like OCaml and Haskell, and SMT-backed semiautomated program verification tools like 

Dafny. This language would provide the nearly arbitrary expressive power of a logic like Coq’s, but with a richer, 

effectful dynamic semantics. It would provide the flexibility to mix SMT-based automation with interactive 

proofs when the SMT solver times out. 

 

Scripting proofs using tactics and metaprogramming: properties of pure programs are specified in expressive 

higher-order (and often dependently typed) logics, and proofs are conducted using various imperative program-

ming languages. 

Along a different axis, program verifiers like Dafny target both pure and effectful programs. They work primarily 

by computing verification conditions (VCs) from programs, usually relying on annotations such as pre- and post-

conditions, and encoding them to automated theorem provers (ATPs) such as satisfiability modulo theories (SMT) 

solvers. 

Meta-F* is a framework that allows F* users to manipulate VCs using tactics. More generally, it supports met-

aprogramming, allowing programmers to script the construction of programs, by manipulating their syntax and 

customizing the way they are type-checked. 

 

Refinement types: 𝑥: 𝑡{𝜙} is the type of all 𝑥 of type 𝑡 such that (𝜆𝑥 ∣ 𝜙)(𝑥). 

 

One verification method that has eluded F* until now is separation logic, the main reason being that the pervasive 

“frame rule” requires instantiating existentially quantified heap variables, which is a challenge for SMT solvers, 

and simply too tedious for users. 

 


