
1

Lecture 5 notes—Refinement
Butler Lampson

6.826

September 15, 2020

Agenda for today

Review definition of implements as subset of traces, with cache example

Too much spec state → history variables, with StatDB example

Abstraction relations ↔ history variables

Premature choice → prophecy variables

2

Correctness

Definition: External code traces ⊆ external spec traces

 Note: this throws away a lot of information: internal state and actions

Safety: what code may do—never anything bad

Liveness: what code must do—eventually something good

A sequential procedure (e.g., 𝑠𝑜𝑟𝑡(𝑎)) relates initial and final states.

Correctness: code relation ⊆ spec relation. That is,

Safety: the spec allows the final state of the code (partial correctness)

Liveness: termination (total correctness)

Basic idea for proof: simulation—code matches spec one action at a time

3

Simple example: code for memory with cache

Note: a command may change the state, be non-deterministic. You can only

assign its return value. An expression is math: no state change, deterministic.

Spec for memory

𝐭𝐲𝐩𝐞 𝑀 = 𝐴 → 𝑉 also a key-value store

𝐯𝐚𝐫 𝑚 : 𝑀

𝑖𝑛𝑖𝑡𝑀() = 𝐯𝐚𝐫 𝑚′ | (𝑚′.dom = 𝐴); 𝑚 ≔ 𝑚′ 𝑚′ arbitrary, defined

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑚(𝑎)

𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑚(𝑎) ≔ 𝑣 𝑚 ≔ 𝑚(𝑎 ≔ 𝑣)

4

Writeback cache code

𝐭𝐲𝐩𝐞 𝐶 = 𝐴 → 𝐨𝐩𝐭 𝑉 𝑐 defined at some 𝐴’s

𝐜𝐨𝐧𝐬𝐭 𝑐𝑆𝑖𝑧𝑒 = 4096 in fact, 4096 of them

𝐯𝐚𝐫 𝑚𝑐 : 𝑀 memory in the code

 𝒄 : 𝑪

𝑖𝑛𝑖𝑡𝐶() = 𝐯𝐚𝐫 𝑐′ ∣ 𝑐′.dom.size = 𝑐𝑆𝑖𝑧𝑒 𝑐′ defined at 𝑐𝑆𝑖𝑧𝑒 𝐴’s

 ∧ ∀𝑎 ∈ 𝑐′.dom ∣ 𝑐′(𝑎) = 𝑚𝑐(𝑎);

 𝑐 ≔ 𝑐′

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑙𝑜𝑎𝑑(𝑎); 𝐫𝐞𝐭 𝑐(𝑎)

𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑙𝑜𝑎𝑑(𝑎); 𝑐(𝑎) ≔ 𝑣

5

Internal

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑙𝑜𝑎𝑑(𝑎); 𝐫𝐞𝐭 𝑐(𝑎)

𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑙𝑜𝑎𝑑(𝑎); 𝑐(𝑎) ≔ 𝑣

𝑙𝑜𝑎𝑑(𝑎) = 𝐢𝐟 𝑐(𝑎) ≠ 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝐬𝐤𝐢𝐩 if 𝑎 isn’t in the cache

 𝐞𝐥𝐬𝐞 {flush1(); 𝑐(𝑎) ≔ 𝑚𝑐(𝑎)} make space, put it there

flush1() = 𝐯𝐚𝐫 𝑎 ∈ 𝑐.dom; pick an 𝑎 in the cache

 𝐢𝐟 𝑐(𝑎) = 𝑚𝑐(𝑎) 𝐭𝐡𝐞𝐧 𝐬𝐤𝐢𝐩

 𝐞𝐥𝐬𝐞 {𝑚𝑐(𝑎) ≔ 𝑐(𝑎)}; write 𝑎 to 𝑚 if dirty

 𝑐(𝑎) ≔ 𝑁𝑜𝑛𝑒 take 𝑎 out of cache

Note: the spec is deterministic, but the code is not.

6

Abstraction function

It has to take the code state (𝑚, 𝑐) to the spec state 𝑚.

𝑚 = 𝑚𝑐 + 𝑐 function overlay

Writing this out

𝑚 = 𝐟𝐮𝐧 𝑎 ⟹ 𝐢𝐟 𝑐(𝑎) ≠ 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑐(𝑎) 𝐞𝐥𝐬𝐞 𝑚𝑐(𝑎)

Why code to spec? Because code has many ways to represent the spec

as in the cache example.

(Not always true, though. Sometimes the spec is better with more state.)

An abstraction function F must satisfy two conditions.

Initial: If 𝑡 is an initial state of 𝑇, then 𝐹(𝑡) is an initial state of 𝑆.

Next (simulation): If 𝑡 is a reachable state of 𝑇

 and 𝑡
𝜋
⇒ 𝑡′ is a step of 𝑇,

 then there is a step 𝐹(𝑡)
𝜋
⇒ 𝐹(𝑡′) of 𝑆

 that has the same trace 𝜋.

7

Simulation

If 𝑡 is a reachable state of 𝑇

and 𝑡
𝜋
⇒ 𝑡′ is a step of 𝑇,

then there is a step 𝐹(𝑡)
𝜋
⇒ 𝐹(𝑡′) of 𝑆

that has the same trace 𝜋.

The diagram commutes

Theorem: If there is an abstraction function from 𝑇 to 𝑆,

then 𝑇 implements 𝑆, i.e., every trace of 𝑇 is a trace of 𝑆.

Why: Induction on the length of the trace.

8

Invariant

Invariant: a property that is true of all reachable states.

Must show that code simulates spec from every reachable state

The invariant bounds the reachable states.

Usually the code doesn’t simulate the spec from every state.

Usually prove 𝑃 is an invariant by induction on the length of executions.

𝑃 is true initially, and if 𝑃(𝑠) and 𝑠 → 𝑠′ then 𝑃(𝑠′)

The only invariant for the WB cache is the cache size: 𝑐.dom.size = 𝑐𝑆𝑖𝑧𝑒

Hash table code for the memory spec would have a more interesting one:

If 𝑣 is in the bucket with hash ℎ, then ℎ𝑎𝑠ℎ(𝑣) = ℎ.

If cache entries have dirty bits the invariant is: 𝑐(𝑎) ≠ 𝑚(𝑎) ⇒ 𝑑𝑖𝑟𝑡𝑦(𝑎)

9

Cache code with dirty

𝐭𝐲𝐩𝐞 𝐶 = 𝐴 → 𝐨𝐩𝐭 (𝑣𝑎𝑙: 𝑉, 𝑑𝑖𝑟𝑡𝑦: Bool) 𝑐 defined at some 𝐴’s

𝐯𝐚𝐫 𝑚𝑐 : 𝑀 memory in the code

 𝑐 : 𝐶

𝑖𝑛𝑖𝑡𝐶() = 𝐯𝐚𝐫 𝑐′ ∣ 𝑐′.dom.size = 𝑐𝑆𝑖𝑧𝑒 𝑐′ defined at 𝑐𝑆𝑖𝑧𝑒 𝐴’s

 ∧ ∀𝑎 ∈ 𝑐′.dom ∣ 𝑐′(𝑎) = (𝑚𝑐(𝑎), false);

 𝑐 ≔ 𝑐′;

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑙𝑜𝑎𝑑(𝑎); 𝐫𝐞𝐭 𝑐(𝑎). 𝑣𝑎𝑙
𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑙𝑜𝑎𝑑(𝑎); 𝑐(𝑎) ≔ (𝑣, true)

10

Internal with dirty

𝐯𝐚𝐫 𝑚𝑐 : 𝑀 memory in the code

 𝑐 : 𝐶

𝑟𝑒𝑎𝑑(𝑎): 𝑉 = 𝑙𝑜𝑎𝑑(𝑎); 𝐫𝐞𝐭 𝑐(𝑎). 𝑣𝑎𝑙
𝑤𝑟𝑖𝑡𝑒(𝑎, 𝑣) = 𝑙𝑜𝑎𝑑(𝑎); 𝑐(𝑎) ≔ (𝑣, true)

𝑙𝑜𝑎𝑑(𝑎) = 𝐢𝐟 𝑐(𝑎) ≠ 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝐬𝐤𝐢𝐩 if 𝑎 is in the cache, done

 𝐞𝐥𝐬𝐞 {flush1(); if not, make space,

 𝑐(𝑎) ≔ (𝑚𝑐(𝑎), false)} and put it there

flush1() = 𝐯𝐚𝐫 𝑎 ∈ 𝑐.dom; pick an 𝑎 in the cache

 𝐢𝐟 𝑐(𝑎). 𝑑𝑖𝑟𝑡𝑦 write 𝑎 to 𝑚 if dirty

 𝐭𝐡𝐞𝐧 {𝑚𝑐(𝑎) ≔ 𝑐(𝑎). 𝑣𝑎𝑙} 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩;
 𝑐(𝑎) ≔ 𝑁𝑜𝑛𝑒 and take 𝑎 out of cache

11

Completeness

The simple abstraction function method always works if the spec avoids

• extra state,

• too few or too many transitions, and

• premature choices.

Why bother? Just don’t make bad choices in the spec?

No. A spec should be written to be as clear as possible to the clients,

not to make it easy to prove the code correct.

12

Extra spec state

Notation: If 𝑞: 𝐬𝐞𝐪 𝑇 and ⊕ is an operator on 𝑇, fold(⊕, 𝑞) is

𝑞0 ⊕ 𝑞1 ⊕ … ⊕ 𝑞𝑛

It works for sets too if ⊕ is commutative.

𝑠𝑢𝑚(𝑞: 𝐬𝐞𝐪 Int) = fold(+, 𝑞)

𝑆𝑡𝑎𝑡𝐷𝐵. Definitions (from a textbook):

𝑚𝑒𝑎𝑛 =
∑ 𝑑𝑏(𝑖)𝑖

𝑛
, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

∑ (𝑑𝑏(𝑖)−𝑚𝑒𝑎𝑛)2
𝑖

𝑛
=

∑ 𝑑𝑏(𝑖)2
𝑖

𝑛
− 𝑚𝑒𝑎𝑛2

𝐯𝐚𝐫 𝑑𝑏 : 𝐬𝐞𝐪 𝑉 ∶= [] a multiset

𝑎𝑑𝑑(𝑣) = 𝑑𝑏 ≔ 𝑑𝑏 ++ [𝑣]
𝑠𝑖𝑧𝑒(): 𝑁𝑎𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒

𝑚𝑒𝑎𝑛(): 𝐨𝐩𝐭 𝑉 = 𝐢𝐟 𝑑𝑏 = [] 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚(𝑑𝑏) 𝑑𝑏. size⁄

𝑣𝑎𝑟(): 𝐨𝐩𝐭 𝑉 = 𝐢𝐟 𝑑𝑏 = []𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒
 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚({𝑣 ∈ 𝑑𝑏 | | (𝑣 − 𝑚𝑒𝑎𝑛())2}) 𝑑𝑏. 𝑠𝑖𝑧𝑒⁄

13

Efficient code for StatDB

𝐯𝐚𝐫 𝑐𝑜𝑢𝑛𝑡 ≔ 0

𝑠𝑢𝑚 ≔ 0

𝑠𝑢𝑚𝑆𝑞 ≔ 0

𝑎𝑑𝑑(𝑣) = 𝑐𝑜𝑢𝑛𝑡 ≔ 𝑐𝑜𝑢𝑛𝑡 + 1; 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑣;
 𝑠𝑢𝑚𝑆𝑞 ≔ 𝑠𝑢𝑚𝑆𝑞 + 𝑣2

𝑚𝑒𝑎𝑛(): 𝐨𝐩𝐭 𝑉 = 𝐢𝐟 𝑐𝑜𝑢𝑛𝑡 = 0 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚/𝑐𝑜𝑢𝑛𝑡

𝑣𝑎𝑟() ∶ 𝐨𝐩𝐭 𝑉 = 𝐢𝐟 𝑐𝑜𝑢𝑛𝑡 = 0 𝐭𝐡𝐞𝐧 𝑁𝑜𝑛𝑒
 𝐞𝐥𝐬𝐞 𝑠𝑢𝑚𝑆𝑞 𝑐𝑜𝑢𝑛𝑡⁄ − 𝑚𝑒𝑎𝑛()2

But there’s no AF, because the spec has more state than the code—there’s

no way we can conjure up all of 𝑑𝑏 from the three Nats in the code.

This is not a bad spec; the job of the spec is to be clear, not to be efficient.

14

History variables

To get an AF, we must add history variables to track the extra spec state.

In this case, we just add 𝑑𝑏, the entire state of the spec, and the spec’s action

𝑑𝑏 ≔ 𝑑𝑏 ++ [𝑣] in 𝑎𝑑𝑑.

Adding all the spec state always works, but often you can add less.

The history variables are not allowed to affect the ordinary variables,

so it’s obvious that the code with history variables has the same traces.

So instead of 𝑐𝑜𝑑𝑒 ⊆ 𝑠𝑝𝑒𝑐, we have 𝑐𝑜𝑑𝑒 = 𝑐𝑜𝑑𝑒 + ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ⊆ 𝑠𝑝𝑒𝑐.

The AF proof needs an invariant that relates 𝑑𝑏 to the rest of the state.

/\ 𝑐𝑜𝑢𝑛𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒
/\ 𝑠𝑢𝑚 = fold(+, 𝑑𝑏)

/\ 𝑠𝑢𝑚𝑆𝑞 = fold(+, 𝑑𝑏 ∘ 𝑠𝑞𝑢𝑎𝑟𝑒)

15

Abstraction relations

Another way: generalize AFs to abstraction relations. ≈ is an AR if:

Initial: If 𝑡 is an initial state of 𝑇, 𝑆 has an initial state 𝑠 such that 𝑡 ≈ 𝑠.

Next (simulation): If 𝑡 and 𝑠 are reachable, 𝑡 ≈ 𝑠 and 𝑡
𝜋
⇒ 𝑡′ is a 𝑇 step,

then there exists an 𝑠′ such that 𝑠
𝜋
⇒ 𝑠′ is an 𝑆 step, and 𝑡′ ≈ 𝑠′.

𝑇 and 𝑆 run in parallel. 𝑇 drives the execution, doing what it wants.

𝑆 follows along, producing the same external trace.

The two conditions guarantee that 𝑆 can always do this.

16

AR for StatDB

Here’s the AR for 𝑆𝑡𝑎𝑡𝐷𝐵

/\ 𝑐𝑜𝑢𝑛𝑡 = 𝑑𝑏. 𝑠𝑖𝑧𝑒
/\ 𝑠𝑢𝑚 = 𝑓𝑜𝑙𝑑(+, 𝑑𝑏)

/\ 𝑠𝑢𝑚𝑆𝑞 = 𝑓𝑜𝑙𝑑(+, 𝑑𝑏 ∘ 𝑠𝑞𝑢𝑎𝑟𝑒)

It’s just the same as the invariant we had for the history variables.

17

Taking several steps in the spec

If 𝑡 and 𝑠 are reachable states of 𝑇 and 𝑆 with 𝑡 ≈ 𝑠, and

𝑡
𝜋
⇒ 𝑡′is a step of 𝑇, then

there’s an execution fragment (sequence of steps) of 𝑆 from 𝑠 to some 𝑠′
with the same trace (one 𝜋 step, others internal) , and

with 𝑡′ ≈ 𝑠′.

𝑠0 ⇒ ⋯ ⇒ 𝑠𝑖

𝜋
⇒ 𝑠𝑖+1 ⇒ ⋯ ⇒ 𝑠′

Usually there are many internal code steps for each spec step, e.g., machine

instructions.

Sometimes you want internal spec steps, such as the 𝑑𝑟𝑜𝑝 action in the

async messaging spec.

18

Premature choice and prophecy variables

Two realistic examples of premature choice in specs.

Reliable two-party channel spec

var 𝑐ℎ : 𝐬𝐞𝐪 𝑀𝑠𝑔 channel

𝑠𝑒𝑛𝑑(𝑚𝑠𝑔) = 𝑐ℎ ∶= 𝑐ℎ ++ [𝑚𝑠𝑔]
𝑟𝑐𝑣(𝑎𝑑𝑑𝑟) = 𝐢𝐟 𝑚𝑠𝑔 = 𝑐ℎ. ℎ𝑒𝑎𝑑 𝐭𝐡𝐞𝐧 {𝑐ℎ ≔ 𝑐ℎ. 𝑡𝑎𝑖𝑙; 𝐫𝐞𝐭 𝑚𝑠𝑔}

At a crash, maybe drop some messages.

𝑐𝑟𝑎𝑠ℎ = 𝐯𝐚𝐫 𝑘𝑒𝑒𝑝 ⊆ 𝑐ℎ.dom; 𝑐ℎ ∶= 𝑘𝑒𝑒𝑝.sort ∘ 𝑐ℎ

0
1

1
3 =

0
1
2

a
b
c

3 d

0
1

b
d

19

Code uses async messaging

var 𝑐ℎ : set AsyncMsg channel

𝑠𝑒𝑛𝑑(𝑎𝑠𝑚) = 𝑐ℎ : = 𝑐ℎ ∪ {𝑎𝑠𝑚}

𝑟𝑐𝑣() = 𝐯𝐚𝐫 𝑎𝑠𝑚 ∈ 𝑐ℎ | 𝐫𝐞𝐭 𝑎𝑠𝑚 doesn’t drop from 𝑐ℎ

The drop action is internal, and non-deterministic.

𝑑𝑟𝑜𝑝() = 𝐯𝐚𝐫 𝑎𝑠𝑚 ∈ 𝑐ℎ; 𝑐ℎ : = 𝑐ℎ − {𝑎𝑠𝑚} can drop any time

In real code (such as TCP) a message can be lost long after a crash.

• An 𝑎𝑠𝑚 for a message sent before a crash can stay in the network.

• If the 𝑎𝑠𝑚 is dropped, so is the 𝑚𝑠𝑔, since there’s no retransmission.

• If the 𝑎𝑠𝑚 is received, so is the 𝑚𝑠𝑔.

20

Spec without premature choice

To fix this, mark in-flight messages:

𝐭𝐲𝐩𝐞 𝑀𝐾 = (𝑚: 𝑀𝑠𝑔, 𝑚𝑎𝑟𝑘: 𝐵𝑜𝑜𝑙) marked message

𝐯𝐚𝐫 𝑐ℎ : 𝐬𝐞𝐪 𝑀𝐾 channel

𝑠𝑒𝑛𝑑(𝑚𝑠𝑔) = 𝑐ℎ ∶= 𝑐ℎ ++ [(𝑚𝑠𝑔, false)]
𝑟𝑐𝑣(𝑎𝑑𝑑𝑟) = 𝐢𝐟 𝑚𝑘 = 𝑐ℎ. ℎ𝑒𝑎𝑑 𝐭𝐡𝐞𝐧 {𝑐ℎ ≔ 𝑐ℎ. 𝑡𝑎𝑖𝑙; 𝐫𝐞𝐭 𝑚𝑘. 𝑚}

𝑑𝑟𝑜𝑝 = 𝐢𝐟 𝑚𝑘 = 𝑐ℎ. ℎ𝑒𝑎𝑑 ∧ 𝑚𝑘. 𝑚𝑎𝑟𝑘 𝐭𝐡𝐞𝐧 𝑐ℎ ≔ 𝑐ℎ. 𝑡𝑎𝑖𝑙

𝑐𝑟𝑎𝑠ℎ = 𝑐ℎ ∶= 𝑐ℎ ∘ (𝐟𝐮𝐧 𝑚𝑘 ⇒ (𝑚𝑘. 𝑚,true)) mark all mk’s in flight

21

Consensus spec

𝐯𝐚𝐫 𝑎𝑔𝑟𝑒𝑒𝑑 : 𝐨𝐩𝐭 𝑉 ≔ 𝑁𝑜𝑛𝑒 data value to agree on

𝑎𝑙𝑙𝑜𝑤(𝑣) = 𝐯𝐚𝐫 𝑎 ∈ {𝑣, 𝑁𝑜𝑛𝑒}; optionally accept 𝑣

 𝐢𝐟 𝑎𝑔𝑟𝑒𝑒𝑑 = 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑎𝑔𝑟𝑒𝑒𝑑 ≔ 𝑎

𝑟𝑒𝑠𝑢𝑙𝑡(): opt 𝑉 = 𝐯𝐚𝐫 𝑎 ∈ {𝑎𝑔𝑟𝑒𝑒𝑑, 𝑁𝑜𝑛𝑒}; 𝐫𝐞𝐭 𝑎 optionally return 𝑎𝑔𝑟𝑒𝑒𝑑

This spec chooses the value to agree on as soon as the value is allowed.

𝑟𝑒𝑠𝑢𝑙𝑡 may return 𝑁𝑜𝑛𝑒 even after the choice is made because in distrib-

uted code maybe not all the participants know what the outcome is.

22

Consensus without premature choice

Code saves allowed values, and the processes chat to choose a value.

The following spec has that form. It has a new 𝑎𝑙𝑙𝑜𝑤, and adds 𝑎𝑔𝑟𝑒𝑒

var 𝑎𝑔𝑟𝑒𝑒𝑑 : 𝐨𝐩𝐭 𝑉 ≔ 𝑁𝑜𝑛𝑒 data value to agree on

𝐯𝐚𝐫 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 : 𝐬𝐞𝐭 𝑉 ≔ {} allowed values

𝑎𝑙𝑙𝑜𝑤(𝑣) = 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ≔ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∪ {𝑣} remember 𝑣

𝑟𝑒𝑠𝑢𝑙𝑡(): opt 𝑉 = 𝐯𝐚𝐫 𝑎 ∈ {𝑎𝑔𝑟𝑒𝑒𝑑, 𝑁𝑜𝑛𝑒}; 𝐫𝐞𝐭 𝑎 optionally return 𝑎𝑔𝑟𝑒𝑒𝑑

𝑎𝑔𝑟𝑒𝑒() = 𝐯𝐚𝐫 𝑎 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑; second half of spec allow

 𝐢𝐟 𝑎𝑔𝑟𝑒𝑒𝑑 = 𝑁𝑜𝑛𝑒 𝐭𝐡𝐞𝐧 𝑎𝑔𝑟𝑒𝑒𝑑 ≔ 𝑎

Note: if 𝑟𝑒𝑠𝑢𝑙𝑡 couldn’t return 𝑁𝑜𝑛𝑒 even after 𝑎𝑔𝑟𝑒𝑒, these specs would

be different, because the second would allow the behavior

𝑎𝑙𝑙𝑜𝑤(1); 𝑟𝑒𝑠𝑢𝑙𝑡() = 𝑁𝑜𝑛𝑒; 𝑎𝑙𝑙𝑜𝑤(2); 𝑟𝑒𝑠𝑢𝑙𝑡() = 1

and the first would not.

23

Prophecy variables

Abstraction functions can still do the job here, but we need an auxiliary

variable that looks into the future, as a history variable looks into the past.

A system 𝑇𝑃 (𝑇 with Prophecy) with a prophecy variable has the same

traces as the original system 𝑇.

24

Rules for prophecy variables

History variable ℎ Prophecy variable 𝑝

1. Every initial state has at least one

value for ℎ.

1. Every state has at least one value

for 𝑝.

2. No existing step is disabled by

new guards involving ℎ.

2. No existing step is disabled in the

backward direction by 𝑝:

If 𝑡
𝜋
⇒ 𝑡′is a step and (𝑡′, 𝑝′) a state,

there’s a 𝑝 and a step of 𝑇𝑃

 (𝑡, 𝑝)
𝜋
⇒ (𝑡′, 𝑝′)

3. Assigning to a vanilla variable

(including a return value) doesn’t

depend on ℎ.

3. Same: 𝑝 can affect what actions

are enabled, but not how an action

changes a vanilla variable.

 4. If 𝑡 is an initial state of 𝑇 and (𝑡, 𝑝)

is a state of 𝑇𝑃, it’s initial.

25

How to write premature-choice specs

Most people find prophecy variables hard to grasp.

If you have a spec 𝑆 that makes a premature choice (not likely), deal with it

at the highest possible level, as above:

• write another spec 𝑆′ without premature choice, and

• use a prophecy variable (or sheer willpower) to show that 𝑆′ = 𝑆.

Then proving lower level code won’t involve prophecy variables.

26

Digression on naming actions

There are (at least) two ways to identify the actions.

• The way the diagram and the code names an action by an identifier such

as 𝑟𝑒𝑎𝑑, together with the values of all the arguments and results.

Thus 𝑟𝑒𝑎𝑑(𝑎): 3 or 𝑟𝑒𝑎𝑑(𝑎, 3).

• The other way only talks about state, and it makes the calling sequence

explicit with state variables for the arguments and results.

So memory has variables 𝑑𝑜𝑅𝑒𝑎𝑑, 𝑑𝑜𝑊𝑟𝑖𝑡𝑒, 𝑎, 𝑣.

The action named 𝑟𝑒𝑎𝑑(𝑏, 𝑢) corresponds to the steps

𝑎 ≔ 𝑏, 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑡𝑟𝑢𝑒;

𝑣 ≔ 𝑢, 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑓𝑎𝑙𝑠𝑒

That is, memory sets 𝑑𝑜𝑅𝑒𝑎𝑑 ≔ 𝑓𝑎𝑙𝑠𝑒 when the result is ready.

