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Lecture 14 notes—Formal concurrency 
Butler Lampson 

6.826 

October 20, 2020 

Agenda for today 

Goal: understand how to prove a concurrent program implements a spec.  

State machines and TLA for concurrency, vs. languages.  

Easy concurrency: making large atomic actions out of small ones  

Examples of concurrency, both easy and hard 

 

Reading question: What are the labels in PlusCal for? What goes wrong if 

you have too few labels? If you have too many? 
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State machine review 

• Model any system as a global state with atomic transitions or steps. 

Some of the state is visible or external. The rest is internal. 

This god’s eye view works even if no agent can see the whole state. 

• A trace, behavior, or history is a sequence of states: 

𝑠0  𝑠1 …  𝑠𝑛  

• An action is a set of possible steps. 

− 𝑥 ≔ 𝑥 + 1 is the steps 𝑥=0 → 𝑥=1,   𝑥=1 → 𝑥=2,   … ,  𝑥=17 → 𝑥=18,  … 

• In TLA+ an action is a (state, next state) predicate: 

−  𝑥 : = 𝑥 + 1 becomes the predicate 𝑥′ = 𝑥 + 1.  

 This is short for 𝑠′ = [𝑠 EXCEPT ! [𝑥] = 𝑥 + 1]  
(sometimes written 𝑠′ = 𝑠[𝑥 ≔ 𝑥 + 1] = 𝑠[𝑥+1/𝑥]; pronounce “/” as “for”) 

 

• A spec is a set of visible traces: what the system can do.  

• Code 𝐶 satisfies spec 𝑆 if 𝐶’s visible traces are a subset of 𝑆’s 

So the spec says what the code is allowed to show externally. 
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Language 

Expressions and assignment, combined with operators: ;  ⇒  𝐞𝐥𝐬𝐞 ∗ 𝐯𝐚𝐫. 

Semantics: Compose actions into a bigger action. (BLK(𝑐) = 𝑐 blocks.) 

Command 𝒄 Action 𝒂𝒄 PlusCal syntax/Meaning 

𝑣 ≔ 𝑒      𝑣′ = 𝑒 

∧ (∀𝑤 EXCEPT 𝑣 ∣ 𝑤′=𝑤)  

expressions and assignment  

𝑐1; 𝑐2  ∃𝑠𝑖 ∣ 𝑐1(𝑠, 𝑠𝑖) ∧ 𝑐2(𝑠𝑖 , 𝑠′)  sequential composition 

𝑒 ⇒ 𝑐0  𝑒 ∧ 𝑐0  if/await: if 𝑝 then 𝑐0 else block 

𝑐1 𝐞𝐥𝐬𝐞 𝑐2  𝑐1 ∨ (BLK(𝑐1) ∧ 𝑐2)  else: 𝑐1 if not blocked, else 𝑐2 

𝑐0 ∗  CLOSURE(𝑐0) ∧ BLK(𝑐0)  while: repeat 𝑐0 until it blocks 

Non-deterministic commands  

𝑐1  𝑐2  𝑐1 ∨ 𝑐2  either/or: 𝑐1 or 𝑐2 

𝐯𝐚𝐫 𝑣  ∃𝑡 ∣ 𝑣′ = 𝑡  with: choose an arbitrary 𝑣  
 

𝐢𝐟 𝑒 𝐭𝐡𝐞𝐧 𝑐1  
𝐞𝐥𝐬𝐞 𝑐2   

(𝑒 ∧ 𝑐1)  (¬𝑒 ∧ 𝑐2)  same as {𝑒 ⇒ 𝑐1} 𝐞𝐥𝐬𝐞 𝑐2  
or {𝑒 ⇒ 𝑐1}  {¬𝑝 ⇒ 𝑐2} 

𝐰𝐡𝐢𝐥𝐞 𝑒 𝐝𝐨 𝑐′  CLOSURE(𝑒 ∧ 𝑐′) ∧ ¬𝑒′  same as (𝑒 ⇒ 𝑐′) ∗ 
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Language: Weakest preconditions 

𝑤𝑝(𝑐, 𝑄): the weakest 𝑃 such that {𝑃} 𝑐 {𝑄}; it tells you the most about 𝑐. 
{𝑃} 𝑐 {𝑄} ⇔ 𝑃 ⇒ 𝑤𝑝(𝑐, 𝑄).      {𝑤𝑝(𝑐, 𝑄)} 𝑐 {𝑄}.      𝑤𝑝(𝑐, 𝑄) ∧ 𝑎𝑐 ⇒ 𝑄. 

 

Command 𝒄 Action 𝒂𝒄 𝒘𝒑(𝒄, 𝑸) = 

𝑣 ≔ 𝑒      𝑣′ = 𝑒 

∧ (∀𝑤 EXCEPT 𝑣 ∣ 𝑤′=𝑤)  

𝑄[𝑣 ≔ 𝑒]  
What 𝑄 says about 𝑣 is true of 𝑒. 

𝑐1; 𝑐2  ∃𝑠𝑖 ∣ 𝑐1(𝑠, 𝑠𝑖) ∧ 𝑐2(𝑠𝑖 , 𝑠′)  𝑤𝑝(𝑐1, 𝑤𝑝(𝑐2, 𝑄))   

𝑒 ⇒ 𝑐0  𝑒 ∧ 𝑐0  ¬𝑒 ∨ 𝑤𝑝(𝑐0, 𝑄)   

𝑐1 𝐞𝐥𝐬𝐞 𝑐2  𝑐1 ∨ (BLK(𝑐1) ∧ 𝑐2)      𝑤𝑝(𝑐1, 𝑄) 
∧ (BLK(𝑐1) ⇒ 𝑤𝑝(𝑐2, 𝑄))  

𝑐0 ∗  CLOSURE(𝑐0) ∧ BLK(𝑐0)    ¬BLK(𝑐0) ⇒ 𝑤𝑝(𝑐0, 𝑤𝑝(c0, 𝑄)) 
∧ BLK(𝑐0) ⇒ 𝑄  

Non-deterministic commands  

𝑐1  𝑐2  𝑐1 ∨ 𝑐2  𝑤𝑝(𝑐1, 𝑄) ∧ 𝑤𝑝(𝑐2, 𝑄)  

𝐯𝐚𝐫 𝑣  ∃𝑡 ∣ 𝑣′ = 𝑡  ∀𝑣 ∣ 𝑄  
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State machines vs. languages 

State machines are flat, except when you introduce an abstraction.  

Languages are recursive: build up the program from smaller parts. 

 

State machines are foundational: you can express any system using only set 

theory and first order logic. 

There’s no built-in notion of sequential execution such as threads. 

You must build whatever you need (usually it’s easy; math is powerful) 

 

Language semantics depends on non-interference: the build-up uses the 

facts that one command establishes to reason about the next one. 

 

Proofs: state machines by an invariant, languages by weakest preconditions. 
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Concurrency and threads 

Most generally,  

• a state machine has a set of actions, 

• zero or more of them are enabled (not blocked), and 

• the next step is one of these actions 

Any enabled action must maintain the invariant. 

Sequential reasoning is simpler: only one next step. 

 

A thread (or process) ℎ has a PC and a set of labeled actions of the form 

𝑝𝑐[ℎ] = 𝑙 ⇒ 𝑎𝑙 ∧ 𝑝𝑐′[ℎ] = 𝑙′ 
An action at 𝑙 in thread ℎ 

is enabled only when 𝑝𝑐[ℎ] = 𝑙 (and 𝑎𝑙 is enabled too), and  

leaves the PC at the next action 𝑙′. 
The next step can be from any thread whose PC is at an enabled action. 

 

Here 𝑎 is an atomic action, one that runs as a single step. 

We want big atomic actions. How? 
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Defining a state machine 

A state machine is just a set of traces. 

A set is defined by a predicate that’s true of its members. 

So the state machine 𝑆 is defined by a predicate on its traces: 

𝑺 = 𝑰𝒏𝒊𝒕𝑺 ∧ 𝑵𝒆𝒙𝒕𝑺  

 

𝐼𝑛𝑖𝑡 is a state predicate that defines the set of initial states. 

𝑁𝑒𝑥𝑡 is an action (two-state) predicate that defines the possible steps 

Typically 𝑁𝑒𝑥𝑡 = 𝑎1 ∨ 𝑎2 ∨ … ∨ 𝑎𝑛; each 𝑎𝑖 defines one of the actions. 

𝑃 is true of a trace if it’s true of the first state. 

𝐴 is true of a trace if it’s true of the pre and post states of the first step. 

𝑄 is true of a trace if  it’s true of every suffix; pronounce it “henceforth”.  

So 𝐴 is true of a trace if 𝐴 is true of every step. 

 

𝐶 implements 𝑆 if 𝐶 ⇒ 𝑆:  𝐼𝑛𝑖𝑡𝐶 ∧ 𝑁𝑒𝑥𝑡𝐶 ⇒ 𝐼𝑛𝑖𝑡𝑆 ∧ 𝑁𝑒𝑥𝑡𝑆 
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Reasoning about traces 

Prove an invariant, a predicate 𝐼 true of every state in a trace; i.e., 𝐼. 

Any set of states that includes all reachable states (predicate = set of states) 

Strengthen it (remove unreachable states) to be inductive—to show 𝐼: 

𝐼𝑛𝑖𝑡 ⇒ 𝐼 𝐼 is true initially 

𝐼 ∧ 𝑁𝑒𝑥𝑡 ⇒ 𝐼′ every step preserves 𝐼 

Then 𝐼𝑛𝑖𝑡 ∧𝑁𝑒𝑥𝑡 ⇒ 𝐼 follows by induction. 

𝐼 should be strong enough to tell you everything you want to know. 

Often it’s much more complex than the invariant you need for the spec 
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Procedures and invariants 

For a procedure 𝑃 with pre- and post-conditions 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 that termi-

nates in a state 𝑑𝑜𝑛𝑒, we want a generalized loop invariant, an 𝐼 for which 

𝑝𝑟𝑒 ⇒ 𝐼 the precondition implies 𝐼 

𝐼 ∧ 𝑑𝑜𝑛𝑒 ⇒ 𝑝𝑜𝑠𝑡 𝐼 implies the postcondition when done 

A call [𝛼]𝑃(𝑥)[𝛽] establishes the invariant 𝐼𝑝𝑜𝑠𝑡 ≡ (𝑝𝑐(𝑡ℎ) = 𝛽) ⇒ 𝑝𝑜𝑠𝑡  

Any concurrent action enabled when 𝑝𝑐(𝑡ℎ) = 𝛽 must preserve 𝐼𝑝𝑜𝑠𝑡 

Likewise for 𝐼𝑝𝑟𝑒 ≡ (𝑝𝑐(𝑡ℎ) = 𝛼) ⇒ 𝑝𝑟𝑒 
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Data refinement 

A state maps variable names to values.  
Ex: If code 𝐶 has variables 𝑐𝑥𝑐, 𝑦 whose values are 5-bit strings, one state of 𝐶 is  

𝑐0 = [𝑐𝑥 ≔ 01100, 𝑐𝑦 ≔ 10010] 

A refinement mapping 𝑚 maps a state 𝑐 of 𝐶 to a state 𝑠 of 𝑆.  

Ex: If 𝑆 variables 𝑥, 𝑦 are Nats, 𝑚(𝑐0) = [𝑥 ≔ 12, 𝑦 ≔ 18] 

𝑚𝑡 works for a trace 𝑡 or step 𝑐𝑐 (short trace) by applying it to each state:  

𝑡𝑆 = 𝑚𝑡(𝑡𝐶) = 𝑡𝐶 ∘ 𝑚 

𝑪 refines 𝑺 under 𝒎 if 𝑚 maps every trace of 𝐶 to a trace of 𝑆.  

𝑡𝐶 ∈ 𝐶 ⇒ 𝑚𝑡(𝑡𝐶) ∈ 𝑆 

𝑚([𝑐𝑥≔01100; 𝑐𝑦≔10010]; [𝑐𝑥≔01100; 𝑐𝑦≔00110]; [𝑐𝑥≔00110; 𝑐𝑦≔00110])  

=  [  𝑥≔12;           𝑦≔18];       [𝑥  ≔12;           𝑦≔6];             [𝑥≔6;             𝑦≔6         ]   
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Logic for refinement 

If 𝐼 is an 𝑆 predicate, 𝐼𝑚 = 𝑚 ∘ 𝐼 is a 𝐶 predicate saying the “same” thing:  

𝐼𝑚(𝑐) = 𝐼(𝑚(𝑐)). 𝐼𝑚 goes backward: 

𝑚 is 𝐶 → 𝑆, 𝐼𝑚 is 𝐬𝐞𝐭 𝑆 → 𝐬𝐞𝐭 𝐶, or (𝑆 → Bool) → (𝐶 → Bool). 

If 𝑰 is the logical formula for 𝐼, as a formula on 𝐶, 𝑰𝒎 is 𝑰 with each occur-

rence of a variable v of S replaced by 𝑚𝑣(𝑐).  
𝑚𝑣 = 𝑚 ∘ 𝜋𝑣 is just the part of m that gives 𝑣’s value, where 𝜋𝑣 projects 𝑣—it maps 

a state 𝑠 to 𝑣’s value in 𝑠. So 𝑚𝑥(𝑐0) = 12 in 𝑆. 



12 
 

Refining actions and traces 

If 𝑎 is an 𝑆 action 𝑎(𝑠, 𝑠′), 𝑎𝑚(𝑐, 𝑐′) = 𝑎(𝑚(𝑐), 𝑚(𝑐′)) is a 𝐶 action that 

does the “same” thing. Like 𝑰𝒎, as a formula on 𝐶 actions, 𝒂𝒎 is 𝒂 with 

each 𝑣 replaced by 𝑚𝑣(𝑐).  

So if 𝑆 is defined by the formula 𝑺 = 𝑰𝒏𝒊𝒕𝑺 ∧𝑵𝒆𝒙𝒕𝑺, the refinement 𝑆𝑚 

is defined by 𝑺𝒎 = 𝑺 with each 𝑣 replaced by 𝑚𝑣(𝑐). 

𝐶 implements 𝑆 under 𝑚 iff 𝑪 ⇒ 𝑺𝒎.  

 

 

That was data refinement. Step refinement means that it’s always OK to 

take a stuttering step UNCHANGED(𝑣1, … , 𝑣𝑛). 
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Atomic actions 

What makes an action atomic? 

− Host: The underlying execution model says so. Example: hardware 

makes load or store of a single word, or test and set atomic. 

− Composition: It’s two steps 𝑎1; 𝑎2, and one of them commutes with 

every action 𝑏 in a different thread that’s enabled after 𝑎1. 

𝑎 and 𝑏 commute if 𝑎; 𝑏 = 𝑏; 𝑎. This means that 

𝑎1; 𝑏; 𝑎2 = 𝑏; 𝑎1; 𝑎2 or  

𝑎1; 𝑏; 𝑎2 = 𝑎1; 𝑎2; 𝑏 or 

Either way, 𝑎1; 𝑎2 runs with no intervening step, so it’s atomic. 

 

Host example: If 𝑥, 𝑦, 𝑧 are variables shared between threads, 𝑥 ≔ 𝑦 + 𝑧 is 

not atomic on most hardware hosts, because other threads can change 𝑦 or 

𝑧 in the middle. There are four host-atomic actions (machine instructions): 

𝑟1 ≔ 𝑦; 𝑟2 ≔ 𝑧; 𝑟3 ≔ 𝑟1 + 𝑟2; 𝑥 ≔ 𝑟3 
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Commuting 

Really easy case 1: If 𝑎 and 𝑏 share no variables that change, they commute. 

In distributed systems, this is sharding (partitioning, striping). 

 

Really easy case 2: Producer-consumer: 𝑝𝑢𝑡 and 𝑔𝑒𝑡 for a buffer commute. 

𝑔𝑒𝑡 might block waiting for a 𝑝𝑢𝑡, so they must be in different threads. 

This is streaming or dataflow. 

 

Easy case: 𝑎 and 𝑏 hold locks that conflict. 

 

Easy case to use: abstraction—prove that (the code for) an action is atomic. 

 

Hard: Anything else. You can do a proof or have a bug. 

 

Eventual: Relax the spec. 
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Locks/mutexes 

If 𝑎 and c don’t commute, their threads must hold mutually exclusive locks. 

This guarantees that 𝑎; 𝑐 can’t happen, because 𝑐 is blocked. 

 

What about lock (mutex) acquire and release, 𝑚. 𝑎𝑐𝑞 and 𝑚. 𝑟𝑒𝑙? 

They only touch 𝑚, so commute with everything except 𝑚 actions.  

When do two 𝑚 actions commute? What sequences can happen? 

    𝑎 [𝛽]       𝑐 Possible sequence (𝑐 is enabled at )? 

1 𝑚. 𝑎𝑐𝑞(ℎ) 𝑚. 𝑎𝑐𝑞(ℎ′) No: 𝑐 is blocked by ℎ holding 𝑚 

2 𝑚. 𝑎𝑐𝑞(ℎ) 𝑚. 𝑟𝑒𝑙(ℎ′) No: 𝑐 is blocked because ℎ′ doesn’t hold 𝑚 

3 𝑚. 𝑟𝑒𝑙(ℎ) 𝑚. 𝑎𝑐𝑞(ℎ′) OK 

4 𝑚. 𝑟𝑒𝑙(ℎ) 𝑚. 𝑟𝑒𝑙(ℎ′) No: both threads can’t hold 𝑚, so one won’t do 𝑟𝑒𝑙 

• So 𝑚. 𝑎𝑐𝑞 commutes with any 𝑐 at 𝛽  

− After 𝑚. 𝑎𝑐𝑞 any 𝑚 action by ℎ′ at 𝛽 is blocked (1,2).  

• But 𝑚. 𝑟𝑒𝑙(ℎ) doesn’t commute with 𝑚. 𝑎𝑐𝑞(ℎ′):  

− 𝑚. 𝑟𝑒𝑙(ℎ);  𝑚. 𝑎𝑐𝑞(ℎ′) is OK (3), but 𝑚. 𝑎𝑐𝑞(ℎ′); 𝑚. 𝑟𝑒𝑙(ℎ) isn’t (2). 

Can’t flip every 𝑐 before 𝑟𝑒𝑙 to change 𝑎; 𝑐; 𝑏 into 𝑐; 𝑎; 𝑏, making 𝑎; 𝑏 atomic. 
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Definition of “commutes” 

“𝑐 is enabled at  and commutes with 𝑎” is 𝑎; ([𝛽] 𝑐) ⊆ 𝑐; 𝑎.  

Semicolon means an 𝑠𝑖, so 𝑐 commutes with 𝑎 iff (with 𝑢 𝑎 𝑢′ for 𝑎(𝑢, 𝑢′)): 

∀ 𝑢, 𝑢′ ∣     ( ∃𝑢𝑖 ∣∣ 𝑢 𝑎  𝑢𝑖 ∧ 𝑢𝑖  𝑐  𝑢′ ∧ 𝑢𝑖(h.pc) = 𝛽 )  𝑢 𝑎; ([𝛽] 𝑐)  𝑢′ 

               ⇒ ( ∃𝑠𝑖 ∣ 𝑢 𝑐   𝑠𝑖 ∧  𝑠𝑖   𝑎  𝑢′ )  𝑢       𝑎; 𝑐       𝑢′ 

 
Anything 𝑎; 𝑐 does, 𝑐; 𝑎 also does. (But not vice-versa: if 𝑎 holds 𝑚 and 𝑐 

does 𝑚. 𝑎𝑐𝑞, there’s a 𝑐; 𝑎 step but no 𝑎; 𝑐 step.) 

 

( )
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Simulation proof 

We want to prove that atomic 𝑎; [𝛽] 𝑏 ⊆ 𝑎; 𝑏. 

 

We make 𝑎 simulate 𝐬𝐤𝐢𝐩 (the relation =) and 𝑏 simulate 𝑎; 𝑏, since we 

know more about 𝑎 than about 𝑏; every other command 𝑐 simulates itself.  

 
 

 

       
 𝑎; [𝛽] 𝑏 ⊆ 𝑎; 𝑏  𝑎; 𝑐; [𝛽] 𝑏 ⊆ 𝑐; 𝑎; 𝑏 

 

( ) ( ) ( )
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Abstraction relation 

So we make the AR ~ the identity except at 𝛽, where it relates any state 𝑢𝑖 

for which 𝑠 → 𝑢𝑖 to 𝑠. So at 𝛽 we haven’t yet done 𝑎 in 𝑆, but we have done 

𝑎 in 𝑈. (Not just a function, since 𝑎 may take many states to 𝑢𝑖): 

   𝑠~𝑢 ≝ (𝑢("h.pc") ≠ 𝛽 ∧ 𝑠 = 𝑢) ∨ (𝑢("h.pc") = 𝛽 ∧ 𝑠 𝑎  𝑢) 

Why is this an AR for 𝑢 → 𝑢′? Trivial if 𝑝𝑐 ≠ 𝛽 for both, since it’s =. 

From 𝛽 we have either 𝑏 or some 𝑐 that commutes with 𝑎. 

 

 
            

 If 𝑝𝑐 ≔ 𝛽, did 𝑎. 

𝑠 𝑎  𝑢𝑖, so 𝑠~𝑢𝑖. 

From 𝑝𝑐 = 𝛽, if 𝑈 does 

𝑏 need 𝑠
𝑎
→ 𝑠𝑖

𝑏
→ 𝑠′, but 

𝑢 is this 𝑠𝑖. 

From 𝑝𝑐 = 𝛽, if 𝑐 is 

next need 𝑠𝑐,   

( ) ( ) ( )
𝑈 

𝑆 
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PlusCal for mutex 

Here is the spec and a simple use to implement a critical section. 

𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑎𝑐𝑞(𝑚) {𝑙: 𝐚𝐰𝐚𝐢𝐭 𝑚 = 𝑓𝑟𝑒𝑒; 𝑚 ≔ 𝑠𝑒𝑙𝑓; 𝐫𝐞𝐭 };  
𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑟𝑒𝑙(𝑚 ) {𝑙: 𝐢𝐟 𝑚 = 𝑠𝑒𝑙𝑓 𝐭𝐡𝐞𝐧 𝑚 ≔ 𝑓𝑟𝑒𝑒 𝐞𝐥𝐬𝐞 𝐡𝐚𝐯𝐨𝐜; 𝐫𝐞𝐭 };    
{ 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝑚 = 𝑓𝑟𝑒𝑒;  
  𝐩𝐫𝐨𝐜𝐞𝐬𝐬(𝑃𝑟𝑜𝑐 ∈ 1. . 𝑁)  

{ 𝑛𝑐𝑠:  𝐬𝐤𝐢𝐩;  (∗ 𝑇ℎ𝑒 𝑁𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ∗)  

  𝑙1:     𝑎𝑐𝑞(𝑚)  

  𝑐𝑠:     𝐬𝐤𝐢𝐩; (∗  𝑇ℎ𝑒 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ∗)  

  𝑙2:     𝑟𝑒𝑙(𝑚); 𝐠𝐨𝐭𝐨 𝑛𝑐𝑠     }  

 

Here is code with less atomicity that uses a spin lock 

𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑎𝑐𝑞(𝑚)  

𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝑡 = ℎ𝑒𝑙𝑑; { 𝑙1: 𝐰𝐡𝐢𝐥𝐞 𝑡 ≠ 𝑓𝑟𝑒𝑒 𝐝𝐨 {𝑙2: 𝑡 ≔ 𝑚; 𝑚 ≔ ℎ𝑒𝑙𝑑}; 𝐫𝐞𝐭 }  

𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑟𝑒𝑙(𝑚) { 𝑙:  𝑚 ≔ 𝑓𝑟𝑒𝑒; 𝐫𝐞𝐭 }    
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Fast mutex 

{ 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 𝑥 = 0; 𝑦 = 0; 𝑏 = [𝑖 ∈ 1. . 𝑁 ↦ FALSE];     (* 𝑏 has one Boolean per process *) 

  𝐩𝐫𝐨𝐜𝐞𝐬𝐬(𝑃𝑟𝑜𝑐 ∈ 1. . 𝑁) ; variable j; 
{ 𝑛𝑐𝑠:     𝐬𝐤𝐢𝐩;  (∗ 𝑇ℎ𝑒 𝑁𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ∗)  

   𝑠𝑡𝑎𝑟𝑡: 𝑏[𝑠𝑒𝑙𝑓]: = TRUE;  
𝑙1: 𝑥 ≔ 𝑠𝑒𝑙𝑓;  
𝑙2: 𝐢𝐟 (𝑦 ≠ 0){ 𝑙3: 𝑏[𝑠𝑒𝑙𝑓] ≔ FALSE;  

   𝑙4: 𝐚𝐰𝐚𝐢𝐭 𝑦 = 0; 𝐠𝐨𝐭𝐨 𝑠𝑡𝑎𝑟𝑡  };   
𝑙5: 𝑦 ≔ 𝑠𝑒𝑙𝑓;  
𝐚𝐬𝐬𝐞𝐫𝐭 𝑥 = 𝑠𝑒𝑙𝑓 ⇒ 𝑦 ≠ 0  

𝛿 𝑙6: 𝐢𝐟 (𝑥 ≠ 𝑠𝑒𝑙𝑓) {  𝑙7: 𝑏[𝑠𝑒𝑙𝑓] ≔ FALSE; 𝑗 ≔ 1;    (* wait for all 𝑏’s to be false *)  

      𝑙8: 𝐰𝐡𝐢𝐥𝐞 (𝑗 ≤ 𝑁) {𝐚𝐰𝐚𝐢𝐭 ¬𝑏[𝑗];  𝑗 ≔ 𝑗 + 1};  
   𝐚𝐬𝐬𝐞𝐫𝐭 𝑦 = 𝑠𝑒𝑙𝑓 ⇒ ∀𝑗: ¬(𝑝𝑐[𝑗] ∈ {𝑙5, 𝑙6, 𝑐𝑠} 

   𝜖 𝑙9: 𝐢𝐟 𝑦 ≠ 𝑠𝑒𝑙𝑓 { 𝑙10: 𝐚𝐰𝐚𝐢𝐭 𝑦 = 0; 𝐠𝐨𝐭𝐨 𝑠𝑡𝑎𝑟𝑡}     };  

𝐚𝐬𝐬𝐞𝐫𝐭 𝑦 ≠ 0 ∧ ∀𝑝 ≠ 𝑠𝑒𝑙𝑓: ((¬𝑝𝑐[𝑝] = 𝑐𝑠) ∧ (𝑝𝑐[𝑝] ∈ {𝑙5, 𝑙6} ⇒ 𝑥 ≠ 𝑝))  

𝐚𝐬𝐬𝐞𝐫𝐭 ∀𝑝 ∈ 1. . 𝑁 ∖ {𝑠𝑒𝑙𝑓} ∶ 𝑝𝑐[𝑝] ≠ "cs"    (* mutual exclusion *) 

𝑐𝑠:   𝐬𝐤𝐢𝐩; (∗  𝑇ℎ𝑒 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ∗)  

𝑙11: 𝑦 ≔ 0 ;  
𝑙12: 𝑏[𝑠𝑒𝑙𝑓] ≔ FALSE ;  
        𝐠𝐨𝐭𝐨 𝑛𝑐𝑠  }   }  
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Backup 
Symbolic execution? 

Formulas vs. functions. 

Models vs. reality. 

State machines demand lots of “𝑥 and 𝑦 commute” or “𝑥 maintains 𝐼” ar-

guments. 

“Explicit yield” as a flexible strategy for bigger atomic actions (Armada). 

PlusCal can do it by using fewer labels. 

Bigger actions = fewer traces to reason about. 

What about left movers? 𝑎𝑐𝑞 is right mover only, 𝑟𝑒𝑙 is left mover only. 

Lock-protected ops are both-movers, because the lock ensures there can’t 

be any non-commuting ops to move over = all non-commuting ops are 

blocked. 

Should give a concrete mover example. 
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Language: Hoare triples 

Taking a predicate 𝑃 as a function from a state 𝑠 to a Boolean,  
{𝑃} 𝑐 {𝑄} ⇔ 𝑃(𝑠) ∧ 𝑐 ⇒ 𝑄(𝑠′). 

 

Command 𝒄 Action 𝒂𝒄 {𝑷} 𝒄 {𝑸} if 

𝑣 ≔ 𝑒      𝑣′ = 𝑒 

∧ (∀𝑤 EXCEPT 𝑣 ∣ 𝑤′=𝑤)  

𝑃 = 𝑄[𝑣 ≔ 𝑒]  

𝑐1; 𝑐2  ∃𝑠𝑖 ∣ 𝑐1(𝑠, 𝑠𝑖) ∧ 𝑐2(𝑠𝑖 , 𝑠′)  {𝑃} 𝑐1 {𝑅} and {𝑅} 𝑐2 {𝑄}   

𝑒 ⇒ 𝑐0  𝑒 ∧ 𝑐0  (𝑃 ⇒ ¬𝑒) ∨ {𝑃} 𝑐0 {𝑄}  

𝑐1 ⊠ 𝑐2  𝑐1 ∨ (BLK(𝑐1) ∧ 𝑐2)  {𝑃} 𝑐1 {𝑄} and  

{𝑃 ∧ BLK(𝑐1)} 𝑐2 {𝑄}  

𝑐0 ∗  CLOSURE(𝑐0) ∧ BLK(𝑐0)  {𝑃} 𝑐0 {𝑃} ∧ (𝑃 ∧ BLK(𝑐0) ⇒ 𝑄)  

Non-deterministic commands  

𝑐1  𝑐2  𝑐1 ∨ 𝑐2  {𝑃} 𝑐1 {𝑄} and {𝑃} 𝑐2 {𝑄} 

𝐯𝐚𝐫 𝑣  ∃𝑡 ∣ 𝑣′ = 𝑡  𝑃 = ∀𝑣 ∣ 𝑄  
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Language: Strongest postconditions 

𝑠𝑝(𝑐, 𝑃): the strongest 𝑄 such that {𝑃} 𝑐 {𝑄}; it tells you the most about 𝑐. 

This is symbolic execution. 
{𝑃} 𝑐 {𝑄} ⇔ 𝑠𝑝(𝑐, 𝑃) ⇒ 𝑄.      {𝑃} 𝑐 {𝑠𝑝(𝑐, 𝑃)}.       𝑃 ∧ 𝑎𝑐 ⇒ 𝑠𝑝(𝑐, 𝑃) 

 

Command 𝒄 Action 𝒂𝒄 𝒔𝒑(𝒄, 𝑷) = 

𝑣 ≔ 𝑒      𝑣′ = 𝑒 

∧ (∀𝑤 EXCEPT 𝑣 ∣ 𝑤′=𝑤)  

∃𝑡 ∣    𝑣 = 𝑒[𝑣 ≔ 𝑡]  
         ∧ 𝑃[𝑣 ≔ 𝑡]  

𝑐1; 𝑐2  ∃𝑠𝑖 ∣ 𝑐1(𝑠, 𝑠𝑖) ∧ 𝑐2(𝑠𝑖 , 𝑠′)  𝑠𝑝(𝑐2, 𝑠𝑝(𝑐1, 𝑃))   

𝑒 ⇒ 𝑐0  𝑒 ∧ 𝑐0  ¬𝑒 ∨ 𝑠𝑝(𝑐0, 𝑃)   

𝑐1 ⊠ 𝑐2  𝑐1 ∨ (BLK(𝑐1) ∧ 𝑐2)      𝑠𝑝(𝑐1, 𝑃) 
∨ (BLK(𝑐1) ⇒ 𝑠𝑝(𝑐2, 𝑃))  

𝑐0 ∗  CLOSURE(𝑐0) ∧ BLK(𝑐0)      s𝑝(𝑐0, 𝑠𝑝(𝑐0, ¬BLK(𝑐0) ∧ 𝑃)) 
∨ BLK(𝑐0) ∧ 𝑃  

Non-deterministic commands  

𝑐1  𝑐2  𝑐1 ∨ 𝑐2  𝑠𝑝(𝑐1, 𝑃) ∨ 𝑠𝑝(𝑐2, 𝑃)  

𝐯𝐚𝐫 𝑣  ∃𝑡 ∣ 𝑣′ = 𝑡  𝑃 ∧ ∃𝑡 ∣ 𝑣 = 𝑡  
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