Lecture 14 notes—Formal concurrency

Butler Lampson 6.826 October 20, 2020

Agenda for today

Goal: understand how to prove a concurrent program implements a spec.

State machines and TLA for concurrency, vs. languages. Easy concurrency: making large atomic actions out of small ones Examples of concurrency, both easy and hard

Reading question: What are the labels in PlusCal for? What goes wrong if you have too few labels? If you have too many?

State machine review

- Model **any** system as a global state with atomic transitions or *steps*. Some of the state is *visible* or *external*. The rest is *internal*. This god's eye view works even if no agent can see the whole state.
- A *trace*, behavior, or history is a sequence of states:

 $S_0 S_1 \dots S_n$

• An **action** is a set of possible steps.

 $-x \coloneqq x + 1$ is the steps $x=0 \rightarrow x=1$, $x=1 \rightarrow x=2$, ..., $x=17 \rightarrow x=18$, ...

- In TLA+ an action is a (state, next state) predicate:
 - -x := x + 1 becomes the predicate x' = x + 1.
 - This is short for s' = [s EXCEPT ! [x] = x + 1]
 - (sometimes written $s' = s[x \coloneqq x + 1] = s[x+1/x]$; pronounce "/" as "for")
- A spec is a **set** of *visible* traces: what the system can do.
- Code *C* satisfies spec *S* if *C*'s visible traces are a **subset** of *S*'s So the spec says what the code is allowed to show externally.

Language

Expressions and assignment, combined with operators: ; \Rightarrow else * \Box var. Semantics: Compose actions into a bigger action. (BLK(*c*) = *c* blocks.)

Command <i>c</i>	Action a_c	PlusCal syntax/Meaning
$v\coloneqq e$	v' = e	expressions and assignment
	$\land (\forall w \text{ except } v \mid w' = w)$	
<i>C</i> ₁ ; <i>C</i> ₂	$\exists s_i \mid c_1(s, s_i) \land c_2(s_i, s')$	sequential composition
$e \Rightarrow c_0$	$e \wedge c_0$	if/await : if p then c_0 else block
c_1 else c_2	$c_1 \lor (BLK(c_1) \land c_2)$	else: c_1 if not blocked, else c_2
<i>C</i> ⁰ *	$CLOSURE(c_0) \land BLK(c_0)$	while : repeat c_0 until it blocks
Non-determin	istic commands	
$c_1 \square c_2$	$c_1 \vee c_2$	either/or: c_1 or c_2
var v	$\exists t \mid v' = t$	with: choose an arbitrary v
if <i>e</i> then <i>c</i> ₁ else <i>c</i> ₂	$(e \wedge c_1) \Box (\neg e \wedge c_2)$	same as $\{e \Rightarrow c_1\}$ else c_2 or $\{e \Rightarrow c_1\} \square \{\neg p \Rightarrow c_2\}$
while e do c'	CLOSURE($e \wedge c'$) $\wedge \neg e'$	same as $(e \Rightarrow c') *$

Language: Weakest preconditions

 $wp(c,Q): \text{ the weakest } P \text{ such that } \{P\} c \{Q\}; \text{ it tells you the most about } c.$ $\{P\} c \{Q\} \Leftrightarrow P \Rightarrow wp(c,Q). \quad \{wp(c,Q)\} c \{Q\}. \quad wp(c,Q) \land a_c \Rightarrow Q.$

Command <i>c</i>	Action a_c	wp(c, Q) =
$v\coloneqq e$	v' = e	$Q[v \coloneqq e]$
	$\land (\forall w \text{ except } v \mid w' = w)$	What Q says about v is true of e .
<i>C</i> ₁ ; <i>C</i> ₂	$\exists s_i \mid c_1(s,s_i) \land c_2(s_i,s')$	$wp(c_1, wp(c_2, Q))$
$e \Rightarrow c_0$	$e \wedge c_0$	$\neg e \lor wp(c_0, Q)$
c_1 else c_2	$C_1 \lor (BLK(C_1) \land C_2)$	$wp(c_1, Q)$
		$\wedge \left(BLK(c_1) \Rightarrow wp(c_2, Q) \right)$
<i>C</i> ⁰ *	$CLOSURE(c_0) \land BLK(c_0)$	$\neg \operatorname{BLK}(c_0) \Rightarrow wp(c_0, wp(c_0, Q))$
		$\land \operatorname{BLK}(c_0) \Rightarrow Q$
Non-determin	istic commands	
$c_1 \square c_2$	$c_1 \vee c_2$	$wp(c_1, Q) \land wp(c_2, Q)$

var v $\exists t \mid v' = t$

 $wp(c_1, Q) \land wp(c) \\ \forall v \mid Q$

State machines vs. languages

State machines are flat, except when you introduce an abstraction. Languages are recursive: build up the program from smaller parts.

State machines are foundational: you can express *any* system using only set theory and first order logic.

There's no built-in notion of sequential execution such as threads.

You must build whatever you need (usually it's easy; math is powerful)

Language semantics depends on non-interference: the build-up uses the facts that one command establishes to reason about the next one.

Proofs: state machines by an invariant, languages by weakest preconditions.

Concurrency and threads

Most generally,

- a state machine has a set of actions,
- zero or more of them are enabled (not blocked), and
- the next step is one of these actions

Any enabled action must maintain the invariant.

Sequential reasoning is simpler: only one next step.

A **thread** (or process) *h* has a PC and a set of labeled actions of the form $pc[h] = l \Rightarrow a_l \land pc'[h] = l'$

An action at l in thread h

is enabled only when pc[h] = l (and a_l is enabled too), and leaves the PC at the next action l'.

The next step can be from *any* thread whose PC is at an enabled action.

Here *a* is an **atomic** action, one that runs as a single step. We want big atomic actions. How?

Defining a state machine

A state machine is just a set of traces.

A set is defined by a predicate that's true of its members.

So the state machine *S* is *defined* by a predicate on its traces:

$S = Init_S \land \Box Next_S$

Init is a state predicate that defines the set of initial states.

Next is an action (two-state) predicate that defines the possible steps

Typically $Next = a_1 \lor a_2 \lor ... \lor a_n$; each a_i defines one of the actions.

P is true of a trace if it's true of the first state. *A* is true of a trace if it's true of the pre and post states of the first step. $\Box Q$ is true of a trace if it's true of every suffix; pronounce it "henceforth". So $\Box A$ is true of a trace if *A* is true of every step.

So $\Box A$ is true of a trace if A is true of every step.

C implements *S* if $C \Rightarrow S$: $Init_C \land \Box Next_C \Rightarrow Init_S \land \Box Next_S$

Reasoning about traces

Prove an **invariant**, a predicate *I* true of every state in a trace; i.e., $\Box I$. Any set of states that includes all reachable states (predicate = set of states) Strengthen it (remove unreachable states) to be *inductive*—to show $\Box I$: *Init* \Rightarrow *I I* is true initially $I \land Next \Rightarrow I'$ every step preserves *I* Then *Init* $\land \Box Next \Rightarrow \Box I$ follows by induction. *I* should be strong enough to tell you everything you want to know. Often it's much more complex than the invariant you need for the spec

Procedures and invariants

For a procedure P with pre- and post-conditions pre and post that termi-
nates in a state done, we want a generalized loop invariant, an I for which
 $pre \Rightarrow I$ the precondition implies I
 $I \land done \Rightarrow post$ I implies the postcondition when done

A call $[\alpha]P(x)[\beta]$ establishes the invariant $I_{post} \equiv (pc(th) = \beta) \Rightarrow post$ Any concurrent action enabled when $pc(th) = \beta$ must preserve I_{post} Likewise for $I_{pre} \equiv (pc(th) = \alpha) \Rightarrow pre$

Data refinement

A state maps variable names to values.

Ex: If code *C* has variables *cxc*, *y* whose values are 5-bit strings, one state of *C* is $c_0 = [cx \coloneqq 01100, cy \coloneqq 10010]$

A refinement mapping m maps a state c of C to a state s of S.

Ex: If *S* variables *x*, *y* are Nats, $m(c_0) = [x \coloneqq 12, y \coloneqq 18]$

 m_t works for a trace t or step cc (short trace) by applying it to each state: $t_S = m_t(t_C) = t_C \circ m$

C refines S under *m* if *m* maps every trace of *C* to a trace of *S*.

$$t_C \in C \Rightarrow m_t(t_C) \in S$$

 $m([cx \coloneqq 01100; cy \coloneqq 10010]; [cx \coloneqq 01100; cy \coloneqq 00110]; [cx \coloneqq 00110; cy \coloneqq 00110]) = [x \coloneqq 12; y \coloneqq 18]; [x \coloneqq 12; y \coloneqq 6]; [x \coloneqq 6; y \coloneqq 6]$

Logic for refinement

If *I* is an *S* predicate, $I^m = m \circ I$ is a *C* predicate saying the "same" thing: $I^m(c) = I(m(c))$. I^m goes backward:

 $m \text{ is } C \to S, I^m \text{ is } \text{set } S \to \text{set } C, \text{ or } (S \to \text{Bool}) \to (C \to \text{Bool}).$

If **I** is the logical formula for *I*, as a formula on *C*, I^m is **I** with each occurrence of a variable *v* of *S* replaced by $m_v(c)$.

 $m_v = m \circ \pi_v$ is just the part of *m* that gives *v*'s value, where π_v projects *v*—it maps a state *s* to *v*'s value in *s*. So $m_x(c_0) = 12$ in *S*.

Refining actions and traces

If *a* is an *S* action a(s,s'), $a^m(c,c') = a(m(c),m(c'))$ is a *C* action that does the "same" thing. Like I^m , as a formula on *C* actions, a^m is *a* with each *v* replaced by $m_v(c)$.

So if *S* is defined by the formula $S = Init_S \land \Box Next_S$, the refinement S^m is defined by $S_m = S$ with each v replaced by $m_v(c)$.

C implements S under m iff $C \Rightarrow S^m$.

That was data refinement. Step refinement means that it's always OK to take a stuttering step UNCHANGED(v_1, \ldots, v_n).

Atomic actions

What makes an action atomic?

- Host: The underlying execution model says so. Example: hardware makes load or store of a single word, or test and set atomic.
- Composition: It's two steps a_1 ; a_2 , and one of them **commutes** with every action *b* in a different thread that's enabled after a_1 .

a and b commute if a; b = b; a. This means that

 $a_1; b; a_2 = b; a_1; a_2$ or $a_1; b; a_2 = a_1; a_2; b$

Either way, a_1 ; a_2 runs with no intervening step, so it's atomic.

Host example: If x, y, z are variables shared between threads, $x \coloneqq y + z$ is not atomic on most hardware hosts, because other threads can change y or z in the middle. There are four host-atomic actions (machine instructions):

$$r_1 \coloneqq y; r_2 \coloneqq z; r_3 \coloneqq r_1 + r_2; x \coloneqq r_3$$

Commuting

Really easy case 1: If *a* and *b* share no variables that change, they commute. In distributed systems, this is **sharding** (partitioning, striping).

Really easy case 2: Producer-consumer: *put* and *get* for a buffer commute. *get* might block waiting for a *put*, so they must be in different threads. This is **streaming** or dataflow.

Easy case: *a* and *b* hold locks that conflict.

Easy case to *use*: **abstraction**—prove that (the code for) an action is atomic.

Hard: Anything else. You can do a proof or have a bug.

Eventual: Relax the spec.

Locks/mutexes

If *a* and *c* don't commute, their threads must hold mutually **exclusive** locks. This guarantees that *a*; *c* can't happen, because *c* is blocked.

What about lock (mutex) acquire and release, *m. acq* and *m. rel*?They only touch *m*, so commute with everything except *m* actions.When do two *m* actions commute? What sequences can happen?

- $a [\beta]$ c Possible sequence (c is enabled at β)?
- 1 m.acq(h) m.acq(h') No: c is blocked by h holding m
- 2 m.acq(h) m.rel(h') No: c is blocked because h' doesn't hold m
- 3 m.rel(h) m.acq(h') OK
- 4 m.rel(h) m.rel(h') No: both threads can't hold m, so one won't do rel
- So *m*. *acq* commutes with any *c* at β
 - After *m*. *acq* any *m* action by h' at β is blocked (1,2).
- But m.rel(h) doesn't commute with m.acq(h'):

-m.rel(h); m.acq(h') is OK (3), but m.acq(h'); m.rel(h) isn't (2).

Can't flip *every c* before *rel* to change *a*; *c*; *b* into *c*; *a*; *b*, making *a*; *b* atomic.

Definition of "commutes"

"c is enabled at β and commutes with a" is $a; ([\beta] c) \subseteq c; a$. Semicolon means an s_i , so c commutes with a iff (with u[a]u' for a(u, u')): $\forall u, u' \mid (\exists u_i \mid u[a]u_i \land u_i[c]u' \land u_i(h.pc) = \beta) \quad u[a; ([\beta] c]u')$ $\Rightarrow (\exists s_i \mid u[c] s_i \land s_i[a]u') \quad u[a; c]u'$ $u = s \xrightarrow{c} s_i \xrightarrow{a} u' = s'$ $u = s \xrightarrow{c} s_i \xrightarrow{a} u_i \xrightarrow{c} u' = s'$ $(pc = \beta)$

Anything *a*; *c* does, *c*; *a* also does. (But not vice-versa: if *a* holds *m* and *c* does *m*. *acq*, there's a *c*; *a* step but no *a*; *c* step.)

Simulation proof

We want to prove that atomic a; $[\beta] b \subseteq a$; b.

We make a simulate **skip** (the relation =) and b simulate a; b, since we know more about a than about b; every other command c simulates itself.

Abstraction relation

So we make the AR ~ the identity except at β , where it relates any state u_i for which $s \rightarrow u_i$ to s. So at β we haven't yet done a in S, but we have done a in U. (Not just a function, since a may take many states to u_i):

$$s \sim u \stackrel{\text{\tiny def}}{=} (u("h.pc") \neq \beta \land s = u) \lor (u("h.pc") = \beta \land s \boxed{a} u)$$

Why is this an AR for $u \rightarrow u'$? Trivial if $pc \neq \beta$ for both, since it's =. From β we have either *b* or some *c* that commutes with *a*.

PlusCal for mutex

```
Here is the spec and a simple use to implement a critical section.

procedure acq(m) {l: await m = free; m \coloneqq self; ret };

procedure rel(m) {l: if m = self then m \coloneqq free else havoc; ret };

{ variable m = free;

process(Proc \in 1..N)

{ ncs: skip; (* The Noncritical Section *)

l1: acq(m)

cs: skip; (* The Critical Section *)

l2: rel(m); goto ncs }
```

Here is code with less atomicity that uses a spin lock

procedure *acq*(*m*)

variable t = held; { l1: **while** $t \neq free$ **do** {l2: $t \coloneqq m$; $m \coloneqq held$ }; **ret** } **procedure** rel(m) { $l: m \coloneqq free$; **ret** }

Fast mutex

```
{ variables x = 0; y = 0; b = [i \in 1..N \mapsto FALSE]; (* b has one Boolean per process *)
 process(Proc \in 1..N); variable j;
     { ncs: skip; (* The Noncritical Section *)
       start: b[self]: = TRUE;
          l1: x \coloneqq self;
          l2: if (y \neq 0){ l3: b[self] := FALSE;
                            l4: await y = 0; goto start };
          l5: v \coloneqq self:
          assert x = self \Rightarrow y \neq 0
          \delta l6: if (x \neq self) { l7: b[self] := FALSE; j := 1; (* wait for all b's to be false *)
                                    l8: while (j \leq N) {await \neg b[j]; j \coloneqq j + 1};
                                  assert y = self \Rightarrow \forall j: \neg (pc[j] \in \{l5, l6, cs\})
                                  \epsilon l9: if y \neq self { l10: await y = 0; goto start } };
          assert y \neq 0 \land \forall p \neq self: ((\neg pc[p] = cs) \land (pc[p] \in \{l5, l6\} \Rightarrow x \neq p))
          assert \forall p \in 1..N \setminus {self} : pc[p] \neq "cs" (* mutual exclusion *)
          cs: skip; (* The Critical Section *)
          l11: y \coloneqq 0;
          l12: b[self] \coloneqq FALSE;
               goto ncs } }
```

Backup

Symbolic execution?

Formulas vs. functions.

Models vs. reality.

State machines demand lots of "x and y commute" or "x maintains I" arguments.

"Explicit yield" as a flexible strategy for bigger atomic actions (Armada). PlusCal can do it by using fewer labels.

Bigger actions = fewer traces to reason about.

What about left movers? *acq* is right mover only, *rel* is left mover only. Lock-protected ops are both-movers, because the lock ensures there can't be any non-commuting ops to move over = all non-commuting ops are blocked.

Should give a concrete mover example.

Language: Hoare triples

Taking a predicate *P* as a function from a state *s* to a Boolean, {*P*} $c \{Q\} \Leftrightarrow P(s) \land c \Rightarrow Q(s')$.

Command <i>c</i>	Action a_c	{ P } c { Q } if
$v\coloneqq e$	v' = e	$P = Q[v \coloneqq e]$
	$\land (\forall w \text{ except } v \mid w' = w)$	
<i>C</i> ₁ ; <i>C</i> ₂	$\exists s_i \mid c_1(s,s_i) \land c_2(s_i,s')$	$\{P\} c_1 \{R\} \text{ and } \{R\} c_2 \{Q\}$
$e \Rightarrow c_0$	$e \wedge c_0$	$(P \Rightarrow \neg e) \lor \{P\} c_0 \{Q\}$
$c_1 \boxtimes c_2$	$C_1 \lor (BLK(C_1) \land C_2)$	$\{P\} c_1 \{Q\}$ and
		$\{P \land BLK(c_1)\} c_2 \{Q\}$
<i>C</i> ⁰ *	$CLOSURE(c_0) \land BLK(c_0)$	$\{P\} c_0 \{P\} \land (P \land BLK(c_0) \Rightarrow Q)$
Non-determin	istic commands	
$c_1 \square c_2$	$c_1 \vee c_2$	$\{P\} c_1 \{Q\} \text{ and } \{P\} c_2 \{Q\}$
var v	$\exists t \mid v' = t$	$P = \forall v \mid Q$

Language: Strongest postconditions

sp(c, P): the *strongest* Q such that $\{P\} c \{Q\}$; it tells you the *most* about c. This is *symbolic execution*. $\{P\} c \{Q\} \Leftrightarrow sp(c, P) \Rightarrow Q$. $\{P\} c \{sp(c, P)\}$. $P \land a_c \Rightarrow sp(c, P)$

Command <i>c</i>	Action a_c	sp(c, P) =		
$v\coloneqq e$	v' = e	$\exists t \mid v = e[v \coloneqq t]$		
	$\land (\forall w \text{ except } v \mid w' = w)$	$\land P[v \coloneqq t]$		
<i>c</i> ₁ ; <i>c</i> ₂	$\exists s_i \mid c_1(s,s_i) \land c_2(s_i,s')$	$sp(c_2, sp(c_1, P))$		
$e \Rightarrow c_0$	$e \wedge c_0$	$\neg e \lor sp(c_0, P)$		
$c_1 \boxtimes c_2$	$C_1 \vee (BLK(C_1) \wedge C_2)$	$sp(c_1, P)$		
		$\vee (BLK(c_1) \Rightarrow sp(c_2, P))$		
<i>C</i> ⁰ *	$CLOSURE(c_0) \land BLK(c_0)$	$sp(c_0, sp(c_0, \neg BLK(c_0) \land P))$		
		$\vee BLK(C_0) \wedge P$		
Non-deterministic commands				

 $c_1 \square c_2 \qquad c_1 \lor c_2$ $\operatorname{var} v \qquad \exists t \mid v' = t$ $sp(c_1, P) \lor sp(c_2, P)$ $P \land \exists t \mid v = t$