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IronFleet: Proving Practical Distributed Systems Correct 

Distributed systems 

Concurrency 

Communication cos 

Partial failure 

 

Ironfleet goal: A practical verified system: Good performance. 

 

Examples:  

Paxos-based replicated state machine 

Rebalancing key-value store 

 
Question 

In the IronFleet paper, what is the spec for an overall system, what is the code that they 

prove meets the spec, and what is the sequence of arguments (e.g., different types of re-

finement) that the authors use in their proof? Which of these proof arguments are machine-

checked, and which are done on paper? 
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Ironfleet layers 

0) Spec 𝑆: centralized. Includes a spec relation that defines what’s visible. 

1) Protocol 𝑃: host-host messages  

Use TLA. Hence, proof by invariants 

Abstract state: unbounded integers, sets, sequences, messages 

Visible: messages sent or received 

Host 𝑃𝐻: atomic actions 𝑃𝐻𝑁𝑒𝑥𝑡(𝑠, 𝑠′) on host and network state 

Network: just a set of messages, no actions 

Abstraction function 𝐴𝐹𝑆 from 𝑃 state to 𝑆 state. 

2) Host 𝐶𝐻: Single-host atomic actions, imperative code.  

Use sequential reasoning + reduction.  
S

Net

C … C UDP
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Ironfleet layers cont’d 

2) Host 𝐶𝐻: Single-host atomic actions, imperative code.  

Use sequential reasoning + reduction. 

Host code refines protocol host spec with 𝐴𝐹𝐻 

𝐶𝐻𝑁𝑒𝑥𝑡(𝑐, 𝑐′) ⇒ 𝑃𝐻𝑁𝑒𝑥𝑡(𝐴𝐹𝐻(𝑐), 𝐴𝐹𝐻(𝑐′)), likewise for 𝐼𝑛𝑖𝑡  

Code for each host action is sequential, usually deterministic 

3) Network: UDP packets. Ghost journal of all packet sends/receives 

4) Distributed system 𝐷 = 𝑁 hosts + network, refines 𝑃 

5) 𝐷 refines 𝑆 

By composing 𝑃 refines 𝑆 and 𝐷 refines 𝑃. 

The 𝑃 to 𝑆 abstraction function defines external visibility. 

 

 

 

S

Net

C … C UDP
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Lock example 

𝐯𝐚𝐫 ℎ𝑒𝑙𝑑: 𝐬𝐞𝐪 𝐼𝑑  // spec state 

𝐼𝑛𝑖𝑡 = 𝐯𝐚𝐫 𝑖𝑑 ∈ 𝐼𝑑; 𝑙ℎ ≔ [𝑖𝑑]  
𝑁𝑒𝑥𝑡 = 𝐯𝐚𝐫 𝑛𝑒𝑤𝐼𝑑 ∈ 𝐼𝑑; 𝑙ℎ ≔ 𝑙ℎ ⧺ [𝑛𝑒𝑤𝐼𝑑]  
 

𝐭𝐲𝐩𝐞 𝑃𝑘𝑡 = [𝑠𝑟𝑐: 𝐼𝑑, 𝑛: Nat ]  
𝐯𝐚𝐫 𝑛𝑒𝑡: [𝑥𝑓𝑒𝑟, 𝑎𝑐𝑞: 𝐬𝐞𝐭 𝑃𝑘𝑡 ≔ { }]  // code state, net 

𝐴𝑅(𝑛𝑒𝑡, ℎ𝑒𝑙𝑑) = ∀𝑝 ∈ 𝑛𝑒𝑡. 𝑎𝑐𝑞 | 𝑝. 𝑠𝑟𝑐 = ℎ𝑒𝑙𝑑[𝑝. 𝑛]  // 𝑠𝑟𝑐 held lock 𝑛 

 

𝐯𝐚𝐫 ℎ𝑜𝑠𝑡𝑠: 𝐼𝑑 → [𝑙𝑘: Bool, 𝑛: Nat]  // code state, hosts 

 

Invariant: one host holds the lock, or it’s in an 𝑥𝑓𝑒𝑟 message 

𝐥𝐞𝐭 𝑖 = {𝑖𝑑 | ℎ𝑜𝑠𝑡𝑠(𝑖𝑑). 𝑙𝑘}. size, 𝑛𝑚𝑎𝑥 = {𝑥 ∈ ℎ𝑜𝑠𝑡𝑠. 𝑟𝑛𝑔 | 𝑥. 𝑛}.max  

𝐢𝐧 𝑖 ≤ 1 ∧ (𝑖 = 0 ⇒ ∃𝑝 ∈ 𝑥𝑓𝑒𝑟 | 𝑝. 𝑛 = 𝑛𝑚𝑎𝑥 + 1)  
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Lock invariants 

Atomicity of 𝑎 is not enough. You also need a precondition and a postcon-

dition for 𝑎.  

That’s what the lock invariant gives you. It has to be an invariant, because 

it’s not enough for the postcondition to hold just for the first step after 𝑎. 

With state machines, there’s nothing special about the lock invariant. It’s 

just a conjunct of the global invariant that holds whenever the PC is outside 

of a critical section. 

𝐼𝑔𝑙𝑜𝑏𝑎𝑙 = (𝑝𝑐 ∈ 𝐶𝑆 ⇒ 𝐼𝑙𝑜𝑐𝑘) ∧ 𝐼𝑜𝑡ℎ𝑒𝑟  
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Quantifier hiding 

Instead of ∀𝑥∃𝑦│𝑝(𝑥, 𝑦), provide a witness:  

𝑦 ≔ 𝑓𝑖𝑛𝑑𝑌(𝑝) ≈ {𝑦′ | 𝑝(𝑥, 𝑦′)}. 𝑐ℎ𝑜𝑜𝑠𝑒  

Makes the theorem prover’s life easier: no need to search for a witness. 

 

Ex: Every reply message has a matching request = ∀ 𝑟𝑒𝑝𝑙𝑦│∃ 𝑟𝑒𝑞 ∈ 𝑠𝑒𝑛𝑡 

𝑅𝑒𝑝𝑙𝑦𝑇𝑜𝑅𝑒𝑞(𝑟𝑒𝑝𝑙𝑦, … ) 𝐩𝐫𝐞 𝑟𝑒𝑝𝑙𝑦 ∈ 𝑛𝑒𝑡 𝐩𝐨𝐬𝐭 𝑟𝑒𝑞 ∈ 𝑛𝑒𝑡  
{… 𝑟𝑒𝑞 ≔ ⋯ }   
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Reduction (movers) 

We saw this in Armada and in reasoning for locks: commute allows move 

   𝒂𝟏; 𝒂𝟐; 𝑏; 𝑐; 𝒂𝟑 = 𝑏; 𝒂𝟏; 𝒂𝟐; 𝒂𝟑; 𝑐 

Reduction for locks: conflict ≡ non-commuting.  
𝒂𝒄𝒒𝟏; 𝑏; 𝒑; 𝒂𝒄𝒒𝟐; 𝒕; 𝒓𝒆𝒍𝟏; 𝑐; 𝑑; 𝒓𝒆𝒍𝟐 = 𝑏; 𝒂𝒄𝒒𝟏; 𝒑; 𝒂𝒄𝒒𝟐; 𝒕; 𝒓𝒆𝒍𝟏; 𝒓𝒆𝒍𝟐; 𝑐; 𝑑  

After 𝑟𝑒𝑙, conflicting actions are possible. 

Reduction for messages: Receive/Process*; Read time; Send/Process* 
𝒓𝒄𝒗𝟏; 𝑏; 𝒑; 𝒓𝒄𝒗𝟐; 𝒕; 𝒔𝒏𝒅𝟏; 𝑐; 𝑑; 𝒔𝒏𝒅𝟐 = 𝑏; 𝒓𝒄𝒗𝟏; 𝒑; 𝒓𝒄𝒗𝟐; 𝒕; 𝒔𝒏𝒅𝟏; 𝒔𝒏𝒅𝟐; 𝑐; 𝑑  

This rule is essential. Without it, you could have an external memory. 

𝑃 and 𝑃𝑅𝑆 commute, so 𝑃 is a both mover. 

𝑅 commutes with 𝑅, 𝑆 commutes with 𝑆.  

For 𝑅 and 𝑆, it’s one-way: 𝑅𝐴; 𝑆𝐵 → 𝑆𝐵; 𝑅𝐴—can’t receive before send. 

𝑅𝐴; 𝑃𝑅𝑆𝐵 → 𝑃𝑅𝑆𝐵; 𝑅𝐴 // 𝑅 is a right mover 

𝑃𝑅𝑆𝐵; 𝑆𝐴 → 𝑆𝐴; 𝑃𝑅𝑆𝐵 // 𝑆 is a left mover  
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Reduction from obligation 

Paper proof: obligation (what we can prove) ⇒ reduction (what we want) 

Dafny checks that code satisfies obligation: 𝑅𝑃∗; 𝑇; 𝑆𝑃∗ in a host action. 

(More recently this was also proved in Dafny.) 

 

Standard main loop enforces the obligation 

𝑀𝑎𝑖𝑛( ) {𝐯𝐚𝐫 𝑠 ≔ 𝐼𝑛𝑖𝑡( ); 𝐰𝐡𝐢𝐥𝐞 true {  

𝐯𝐚𝐫 𝑒𝑣 ≔ 𝐺𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑠( ), 𝑚𝑦𝐼𝑂𝑠: 𝐬𝐞𝐪 𝐼𝑂;  

𝑠, 𝑚𝑦𝐼𝑂𝑠 ≔ 𝑁𝑒𝑥𝑡(𝑠) ;  𝐚𝐬𝐬𝐞𝐫𝐭 𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑠( ) = 𝑒𝑣 ⧺ 𝑚𝑦𝐼𝑂𝑠;  

𝐚𝐬𝐬𝐞𝐫𝐭 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑚𝑦𝐼𝑂𝑠) }}   
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Liveness 

• Harder than safety. 

 

• Based on fairness assumptions. 

 

• For RSM, depends on complicated assumptions about failures. 
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Paxos-based replicated state machine (RSM) 

• Deterministic machine does a sequence of commands. 

• All replicas agree on the next command. 

• Agreement by the Paxos consensus protocol. 

• IronRSM spec: same output as single machine. 

 

• Idea of Paxos: A sequence of rounds. In each one 

− Propose a command 𝑐.  

− Try for a quorum of acceptors (two quorums intersect).  

 Acceptor accepts 𝑐, or abstains if it’s seen a later round 

− If you learn a quorum for 𝑐, that’s the outcome. 

− Else try a new round for 𝑐′, but if 𝒐𝒖𝒕𝒄𝒐𝒎𝒆 = 𝒄 is possible, 𝒄′ = 𝒄. 
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Ironfleet’s RSM is practical 

− Batching to amortize the cost of consensus across multiple requests 

− Log truncation to constrain memory usage 

− Responsive view-change timeouts to avoid timing assumptions  

− State transfer to recover from extended disconnection 

− A reply cache to avoid unnecessary work 

 

• Liveness: 

− Impossible in an asynchronous system (FLP) 

− Show implied by timing assumption: a quorum stays accessible for 

long enough and doesn’t get overloaded. 
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IronKV 

• Non-trivial because of rebalancing. 

 

• Otherwise it’s about sequential reasoning plus reliable messaging. 

 

• Key invariant: every key belongs to one host, or an in-flight packet. 

 

• Tricky data structure: finite representation of infinite key → host map. 
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Assumptions 

• The spec for each system and the main-event loop are correct.  

• The network does not tamper with packets 

• Dafny, the .NET compiler and runtime, the underlying Windows OS, 

and the underlying hardware are correct 

− Ironclad shows how to compile Dafny code into verifiable assembly 

code to avoid these dependencies.  

• The paper proof of obligation ⇒ reduction is correct. 

• Liveness properties depend on further assumptions       
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Pragmatics 

• Verified libraries 

− Concrete → abstract refinement for common data structures 

− Marshalling: serializing and parsing 

− Properties of sets, sequences, etc. 

 

• Ghost variables for permanent history 

− Notable, network messages 

 

• Functional first, then refine to imperative 

 

• Automation challenges: annotations 

 

• Roughly 4x more code than an unverified system 

− Also needs verification experts 

 


