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Background 

Many of the authors were Ironfleet authors. 

 

What is SGX for? Why initially not on server chips? 

DRM?  

Or maybe that Intel starts with desktop chips historically. 

 

SGX issues 

Complex 

Hard to change 

Side channels/controlled channels, esp. via page faults.  

Cache partitioning— to control side channels, don’t share resources 

 

Komodo goal: minimal hardware support 
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Security basics 

Security = isolation + sharing 

Isolation = secrecy (control data out) + integrity (control actions in) 

Sharing = exercising control: who can do what 

Who = authentication: who gets data / gives command — principals 

People, programs, groups, channels 

At runtime need secure channels in/out: wire, host, crypto 

To manage security, need meaningful principals 

Connect them by the “speaks for” relation: 𝐴 ⇒ 𝐵 

If 𝐴 says something, 𝐵 says it too. 

Handoff: if 𝐴 ⇒ 𝐵  ∧   𝐴 says (𝐶 ⇒ 𝐵) then 𝐶 ⇒ 𝐵  

What = authorization: what data / commands 

Channel ⇒ user/group ⇒ label/resource 
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Isolation mechanisms 

Host creates 𝑛 execution environments (EE) 
Separate machines—including co-processors (which usually fail) 

Enclave 

Hypervisor / VMM 

Operating system 

Browser 

How does third party know what code is in an EE: attestation: 

channel ⇒ code hash (measurement) ⇒ code name 

Host says channel (key) ⇒ code hash, policy says code hash ⇒ code name 

Can do this recursively: 𝐴 attests to 𝐵 attests to 𝐶 

𝐻𝑊 says 𝐾𝑚 ⇒ 𝑀, 𝑀 says 𝐾𝑒 ⇒ enclave hash. 

 Policy says 𝑀 ⇒ any enclave hash, so 𝑀 can handoff. 

Also for different versions of 𝑀 and E.  

 EE1 

Host 

EE2 

Logical Actual 

Host2 

EE2 EE1 

Host1 Host2 

EE2 EE1 

Host1 Host3 

EE3 

(a) EE’s on the same host (b) Inter-host channel (c) Channel Intermediary 
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Vulnerabilities    

How does the bad guy 𝑌 make it go wrong? 

1. Send 𝑋 some bad input, either directly or indirectly. 

2. Use an unsafe function provided by 𝐻 like a debugging interface.  

3. Make 𝑋’s host 𝐻 go bad. 
 

Host 

X 
1 

3 

2 

Y 
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Enclave 

A program as principal needs isolation. 

At machine level, host could be OS (very complex) or hypervisor (complex) 

 

Idea: Replace hypervisor with hardware—less to trust 

Enclave should be “small”— small TCB 

but of course people push the boundary 

OS is the enemy 

Crypto for external services: storage, networking 

No resource allocation, including scheduling! 
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Uses for enclaves 

Factor the application, secure the critical bits. Examples: 

DRM, 

secure signing 

protect crypto keys 

perhaps confidential computing. 

 

Run the whole application, as if on a separate machine. 

Competition: hypervisor, separate hardware 

Much more demanding for the enclave host 
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Threat model 

Assume all software outside the enclave is hostile 

In particular, the OS, as well as other enclaves 

Cache sharing. 

Power metering. 

Induced faults:  

Plundervolt: hack frequency/voltage) 

Rowhammer: hack weak DRAM cells 

 

Physical threats: 

Passive: snoop on busses, sense power, radiation, … 

Active (induce faults): power, temperature, light, alpha particles, … 
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SGX (Intel Software Guard eXtension) 

Enclave implemented by  

hardware for memory protection, exceptions, root key 𝐾ℎ, randomness; 

microcode for enclave creation, entry/exit, attestation 

Attacks:  

Side channels as above (don’t share resources) 

Bugs—microcode is complicated 

Controlled channels—OS can see page faults 

 

Memory data is encrypted, MACed in a Merkle tree 

Addresses are visible to snooping 
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Komodo idea 

Minimal hardware + monitor, instead of SGX’s microcode. 

Disentangle essential hardware from software. 

Monitor does transfers, checking—no resource allocation 

“Monitor” = baby hypervisor (but no multiplexing or I/O drivers) 

Komodo does entering, leaving of enclaves. 

OS builds enclaves, giving secure or insecure pages to monitor 

Rely on hardware only for: 

Secure memory region for monitor and enclaves. 

For SW threats, just protect some physical memory from OS and I/O. 

For HW threats, SGX has memory encryption / Merkle tree. 

Protected execution for the monitor (in SGX, microcode) and enclave. 

Secure control transfer in and out of monitor. 

Isolated monitor and enclave state (memory, registers). 

A root of trust for attestation. 

Randomness. 
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Local attestation 

Attest(u32 data[8])→u32 mac[8]   

caller enclave says data ⇒ enclave’s measure 𝑚𝑠𝑒  

Usually data is a signing key 𝐾𝑒, so caller is saying 𝐾𝑒 ⇒ 𝑚𝑠𝑒 

This means that if 𝐾𝑒 𝐬𝐚𝐲𝐬 𝑥 then 𝑚𝑠𝑒 says x 

Verify(u32 data[8], u32 measure[8], u32 mac[8])→ bool ok 

monitor says measure says data ⇒ measure 

 

To convince an external third party 

Monitor gets a root-of-trust key 𝐾𝑚 from hardware 

Hardware makes 𝐾ℎ 𝐬𝐚𝐲𝐬 𝐾𝑚 ⇒ 𝑚𝑠𝑚 

Monitor makes 𝐾𝑚 𝐬𝐚𝐲𝐬 𝐾𝑒 ⇒ 𝑚𝑠𝑒 

or delegates this task to a trusted enclave  

that learns𝐾𝑒 ⇒ 𝑚𝑠𝑒 from verify 

Third party policy trusts 𝐾ℎ for 𝐾𝑚 ⇒ 𝑚𝑠𝑚   Why? 

so it knows 𝑚𝑠𝑚 𝐬𝐚𝐲𝐬 𝐾𝑒 ⇒ 𝑚𝑠𝑒 

and needs to trust 𝑚𝑠𝑚 for 𝑚𝑠𝑒 
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Komodo implementation 

Prototype runs on ARM TrustZone 

Must trust the hardware (and toolchain) 

Formal verification for monitor software: 

spec ⇒ “client is isolated from other software” 

Only enclave can modify its code or data 

No bits in an enclave leak outside unless enclave reveals them 

code ⇒ spec 

 

Non-interference 

Confidentiality: all public outputs are determined by public inputs 

Integrity: all trusted outputs are determined by trusted inputs 

 

Komodo doesn’t constrain what the enclave does.  

 

“Local” attestation: monitor tells you the MAC of all the enclave code/data 
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TrustZone 

A TrustZone processor runs in one of two worlds:  

normal (where a regular OS and applications run), and  

secure.  

Control registers are banked (including MMU config and page table base). 

(Physical memory protection is platform-specific.) 



14 
 

Monitor abstract state 

𝑃𝑎𝑔𝑒𝐷𝐵 abstracts memory and threads 

𝑃𝑎𝑔𝑒𝑁𝑜 (for secure memory) → (owning enclave, type, page contents).  

Type is spare, data, page table, address space, thread (these are puns) 

OS can populate a PT 

 

Nothing modeled or proved about enclave behavior—specifically, can 

read/write unsecured memory.  

You might want taint tracking and sanitizing, at least. 
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TCB 

ARM model 

Monitor spec (with consistency invariants) 

12 monitor calls from outside OS 

7 SVC calls from enclave 

 

Verification tools (Dafny and Z3) 

Assembler, linker, and bootloader 
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Verification 

Monitor code uses ARM machine model as state machine. 

State = everything visible: memory, registers (including banks) 

Hack: if, while, call rather than PC changes  

except for monitor ↔ enclave 

Exceptions: avoid by preconditions, except interrupts 

Enclave code spec: trashes all accessible state, then raises an exception. 

 

Idea: everything between two world transitions is a single atomic action 

Transitions are between two of enclave, monitor, and normal 

Transitions need not be deterministic 

Modeled as an unknown (integer) seed 
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Verification flow 
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State machine for non-sequential execution 

 
 



19 
 

Top level spec 

Top level spec: a 𝑁𝑒𝑥𝑡 predicate describing the SMC handler.  

𝐩𝐫𝐞𝐝𝐢𝐜𝐚𝐭𝐞 𝑠𝑚𝑐ℎ𝑎𝑛𝑑𝑙𝑒𝑟(𝑠: 𝑠𝑡𝑎𝑡𝑒, 𝑑: 𝑃𝑎𝑔𝑒𝐷𝑏, 𝑠′: 𝑠𝑡𝑎𝑡𝑒, 𝑑′: 𝑃𝑎𝑔𝑒𝐷𝑏) 

Relates the concrete machine and abstract 𝑃𝑎𝑔𝑒𝐷𝐵 states (𝑠 and 𝑑) 

just after taking an SMC exception from the OS,  

to the final states (𝑠′ and 𝑑′) just prior to returning: 

 

Only two SMCs involve enclave execution: Enter and Resume.  

The rest are pure functions (𝑃𝑎𝑔𝑒𝐷𝐵, 𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑃𝑎𝑔𝑒𝐷𝐵, OK? ). 
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Enter and Resume 

Enter and Resume also relate two states and 𝑃𝑎𝑔𝑒𝐷𝐵s.  

Spec forces the code to enter from a highly constrained state. 

PT base = enclave PT base. 

PT in memory matches abstract one in 𝑃𝑎𝑔𝑒𝐷𝐵. 

TLB is consistent. 

Secure pages and registers have correct content.  

 

Monitor code can do what it likes as long as it makes a correct state. 
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Non-interference 

Secrecy : publicly observable outputs depend only on observable inputs 

Integrity: trusted outputs depend only on trusted inputs 

 

How? Define an “observably equivalent” relation: ≈𝑎𝑑𝑣.  

If the initial states of two executions are related, so are the final states.  

 

The nondeterminism of enclave execution is modeled with an oracle, 

an unknown integer seed (same idea as step objects in Armada). 
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Declassification 

Violations of non-interference: 

Type of exception from enclave 

Return value from enclave Exit 

Which pages are allocated from spare or returned to spare 

 

The axioms that allow this are part of the TCB 
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Lessons (from the paper) 

Need verification: Even a small code base has bugs 

“Trusted” code can have bugs. Really means “untrustworthy”. 

Tools can get better. 

Failed verifications are hard to debug 

Opaque functions are good, to guide the prover. 
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From https://medium.com/corda/intro-to-sgx-

from-http-to-enclaves-1bf38a3bf595 
How can we verify that such a signature over a report comes from a genuine 

Intel chip? We can’t. But Intel can, and this is what their Intel Attestation 

Service is for. They have a REST API to send such signed reports to, and if 

the report is valid and signed by a genuine Intel CPU then the IAS will reply 

with an OK, signed with Intel’s root key. 

Note: this is a simplification, the real protocol is more complex and includes 

an additional “EPID provisioning” step, the CPU key isn’t used directly. 

 

 

https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595
https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595
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From the paper 
Decouple the core hardware mechanisms such as memory encryption, ad-

dress-space isolation and [minimal] attestation from the management 

thereof, which Komodo delegates to a privileged software monitor. We 

show that the approach is practical and performant with a concrete imple-

mentation of a prototype in verified assembly code on ARM TrustZone. 

What distinguishes SGX is memory encryption, independence from a large 

untrusted OS, and the folklore intuition that hardware is more secure than 

software. Komodo replaces folklore with formal verification. Komodo is 

implemented as a software reference monitor in verified assembly code. 

 

The SGX implementation consists of three components: 

(i) encryption and integrity protection for a static region of physical memory 

by an encryption engine in the memory controller,  

(ii) a set of instructions to mess with enclaves, and  

(iii) changes to the processor’s TLB miss and exception handling proce-

dures that enforce enclave protections on access to the encrypted memory 

region. 
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Although it has no direct access to encrypted pages, the OS allocates and 

maps them to enclaves, and although it cannot directly manipulate an en-

clave’s register state, the OS chooses when, and on which CPUs, to execute 

enclave threads. 

There are SGX instructions that manipulate the enclave page cache map 

(EPCM) which stores metadata for every encrypted page, including its al-

location state, type, owning enclave, permissions, and virtual address. Ef-

fectively a reverse map of encrypted pages, the EPCM is also consulted on 

a TLB miss to enforce enclave protections on memory—every page table 

mapping must be consistent with the EPCM. 

Threat model 

Like SGX, we seek to protect the confidentiality and integrity of user-mode 

code in an enclave from an attacker who has full control over a platform’s 

privileged software (OS and hypervisor). Two variants: physical attacks on 

memory in scope or not. If so, the attacker may access any RAM external 

to the CPU package. This includes bus snooping and cold-boot [36] attacks. 
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Primitives 

We rely on five hardware primitives:  

• Isolated memory for monitor code/data and enclave pages, protected by 

crypto against physical attacks (or on-chip for small enclaves). Else just 

IOMMU. 

• Protected execution for the monitor. In SGX, microcode. Could be DEC 

Alpha PALcode, RISC-V machine mode, secure monitor mode of ARM 

TrustZone. 

o Secure control transfer between monitor code and normal execution 

o Protection against unprogrammed control transfers in monitor code 

or access to its registers. Not another (costly) layer of memory trans-

lation. 

• Protected execution for enclaves. A typical user mode is OK, if pro-

tected from the OS. 

o A TrustZone processor runs in one of two worlds: normal for a reg-

ular OS and applications run, and secure. Control registers are 

banked. 
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• A root of trust for attestation. Either hardware or an early bootloader 

attests to a secure hash of the monitor. The monitor in turn implements 

enclave attestation. 

• A source of randomness. 

 

Strategy: build enclave bit by bit, to minimize monitor complexity. Some 

Hyperkernel strategies. Then finalize before running. 

 

High-level invariants on spec: it maintains consistency invariants on page 

state (described in §5.2) and that it guarantees enclave confidentiality and 

integrity (§6). 

 

Have a formal model of ARM: core registers R0–R12, stack pointer (SP), 

link register (LR), portions of the current and saved program status registers 

(CPSR and SPSRs), privilege modes, control flow, interrupts, exceptions, 

and semantics of 25 instructions.  

No PC, instead if, while, call. But do model monitor entry and exit.  

Model VM explicitly as part of load/store.  
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User mode execution is modeled as havoc; don’t prove anything about user 

code, just that it can’t mess up the monitor. 

TLB consistency: …  

 

Dynamic allocation: Spare pages to or from the OS, and enclave can map 

them. 

 

A Komodo attestation is a message authentication code (MAC) using a se-

cret key generated at boot from a cryptographically secure source of ran-

domness. The MAC is computed over (i) the attesting enclave’s measure-

ment, and (ii) enclave-provided data, which may be used to bind a public 

key-pair to the enclave and hence bootstrap encrypted communication with 

code outside the enclave [56]. 

 

 

 

 


