
1

Lecture 21 Notes: Komodo

Butler Lampson

MIT 6.826

November 17, 2020

Komodo: Using verification to disentangle secure-enclave hardware from

software

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, Bryan Parno

SOSP ’17, October 28, 2017, Shanghai, China

2

Background

Many of the authors were Ironfleet authors.

What is SGX for? Why initially not on server chips?

DRM?

Or maybe that Intel starts with desktop chips historically.

SGX issues

Complex

Hard to change

Side channels/controlled channels, esp. via page faults.

Cache partitioning— to control side channels, don’t share resources

Komodo goal: minimal hardware support

3

Security basics

Security = isolation + sharing

Isolation = secrecy (control data out) + integrity (control actions in)

Sharing = exercising control: who can do what

Who = authentication: who gets data / gives command — principals

People, programs, groups, channels

At runtime need secure channels in/out: wire, host, crypto

To manage security, need meaningful principals

Connect them by the “speaks for” relation: 𝐴 ⇒ 𝐵

If 𝐴 says something, 𝐵 says it too.

Handoff: if 𝐴 ⇒ 𝐵 ∧ 𝐴 says (𝐶 ⇒ 𝐵) then 𝐶 ⇒ 𝐵

What = authorization: what data / commands

Channel ⇒ user/group ⇒ label/resource

4

Isolation mechanisms

Host creates 𝑛 execution environments (EE)
Separate machines—including co-processors (which usually fail)

Enclave

Hypervisor / VMM

Operating system

Browser

How does third party know what code is in an EE: attestation:

channel ⇒ code hash (measurement) ⇒ code name

Host says channel (key) ⇒ code hash, policy says code hash ⇒ code name

Can do this recursively: 𝐴 attests to 𝐵 attests to 𝐶

𝐻𝑊 says 𝐾𝑚 ⇒ 𝑀, 𝑀 says 𝐾𝑒 ⇒ enclave hash.

 Policy says 𝑀 ⇒ any enclave hash, so 𝑀 can handoff.

Also for different versions of 𝑀 and E.

 EE1

Host

EE2

Logical Actual

Host2

EE2 EE1

Host1 Host2

EE2 EE1

Host1 Host3

EE3

(a) EE’s on the same host (b) Inter-host channel (c) Channel Intermediary

5

Vulnerabilities

How does the bad guy 𝑌 make it go wrong?

1. Send 𝑋 some bad input, either directly or indirectly.

2. Use an unsafe function provided by 𝐻 like a debugging interface.

3. Make 𝑋’s host 𝐻 go bad.

Host

X
1

3

2

Y

6

Enclave

A program as principal needs isolation.

At machine level, host could be OS (very complex) or hypervisor (complex)

Idea: Replace hypervisor with hardware—less to trust

Enclave should be “small”— small TCB

but of course people push the boundary

OS is the enemy

Crypto for external services: storage, networking

No resource allocation, including scheduling!

7

Uses for enclaves

Factor the application, secure the critical bits. Examples:

DRM,

secure signing

protect crypto keys

perhaps confidential computing.

Run the whole application, as if on a separate machine.

Competition: hypervisor, separate hardware

Much more demanding for the enclave host

8

Threat model

Assume all software outside the enclave is hostile

In particular, the OS, as well as other enclaves

Cache sharing.

Power metering.

Induced faults:

Plundervolt: hack frequency/voltage)

Rowhammer: hack weak DRAM cells

Physical threats:

Passive: snoop on busses, sense power, radiation, …

Active (induce faults): power, temperature, light, alpha particles, …

9

SGX (Intel Software Guard eXtension)

Enclave implemented by

hardware for memory protection, exceptions, root key 𝐾ℎ, randomness;

microcode for enclave creation, entry/exit, attestation

Attacks:

Side channels as above (don’t share resources)

Bugs—microcode is complicated

Controlled channels—OS can see page faults

Memory data is encrypted, MACed in a Merkle tree

Addresses are visible to snooping

10

Komodo idea

Minimal hardware + monitor, instead of SGX’s microcode.

Disentangle essential hardware from software.

Monitor does transfers, checking—no resource allocation

“Monitor” = baby hypervisor (but no multiplexing or I/O drivers)

Komodo does entering, leaving of enclaves.

OS builds enclaves, giving secure or insecure pages to monitor

Rely on hardware only for:

Secure memory region for monitor and enclaves.

For SW threats, just protect some physical memory from OS and I/O.

For HW threats, SGX has memory encryption / Merkle tree.

Protected execution for the monitor (in SGX, microcode) and enclave.

Secure control transfer in and out of monitor.

Isolated monitor and enclave state (memory, registers).

A root of trust for attestation.

Randomness.

11

Local attestation

Attest(u32 data[8])→u32 mac[8]

caller enclave says data ⇒ enclave’s measure 𝑚𝑠𝑒

Usually data is a signing key 𝐾𝑒, so caller is saying 𝐾𝑒 ⇒ 𝑚𝑠𝑒

This means that if 𝐾𝑒 𝐬𝐚𝐲𝐬 𝑥 then 𝑚𝑠𝑒 says x

Verify(u32 data[8], u32 measure[8], u32 mac[8])→ bool ok

monitor says measure says data ⇒ measure

To convince an external third party

Monitor gets a root-of-trust key 𝐾𝑚 from hardware

Hardware makes 𝐾ℎ 𝐬𝐚𝐲𝐬 𝐾𝑚 ⇒ 𝑚𝑠𝑚

Monitor makes 𝐾𝑚 𝐬𝐚𝐲𝐬 𝐾𝑒 ⇒ 𝑚𝑠𝑒

or delegates this task to a trusted enclave

that learns𝐾𝑒 ⇒ 𝑚𝑠𝑒 from verify

Third party policy trusts 𝐾ℎ for 𝐾𝑚 ⇒ 𝑚𝑠𝑚 Why?

so it knows 𝑚𝑠𝑚 𝐬𝐚𝐲𝐬 𝐾𝑒 ⇒ 𝑚𝑠𝑒

and needs to trust 𝑚𝑠𝑚 for 𝑚𝑠𝑒

12

Komodo implementation

Prototype runs on ARM TrustZone

Must trust the hardware (and toolchain)

Formal verification for monitor software:

spec ⇒ “client is isolated from other software”

Only enclave can modify its code or data

No bits in an enclave leak outside unless enclave reveals them

code ⇒ spec

Non-interference

Confidentiality: all public outputs are determined by public inputs

Integrity: all trusted outputs are determined by trusted inputs

Komodo doesn’t constrain what the enclave does.

“Local” attestation: monitor tells you the MAC of all the enclave code/data

13

TrustZone

A TrustZone processor runs in one of two worlds:

normal (where a regular OS and applications run), and

secure.

Control registers are banked (including MMU config and page table base).

(Physical memory protection is platform-specific.)

14

Monitor abstract state

𝑃𝑎𝑔𝑒𝐷𝐵 abstracts memory and threads

𝑃𝑎𝑔𝑒𝑁𝑜 (for secure memory) → (owning enclave, type, page contents).

Type is spare, data, page table, address space, thread (these are puns)

OS can populate a PT

Nothing modeled or proved about enclave behavior—specifically, can

read/write unsecured memory.

You might want taint tracking and sanitizing, at least.

15

TCB

ARM model

Monitor spec (with consistency invariants)

12 monitor calls from outside OS

7 SVC calls from enclave

Verification tools (Dafny and Z3)

Assembler, linker, and bootloader

16

Verification

Monitor code uses ARM machine model as state machine.

State = everything visible: memory, registers (including banks)

Hack: if, while, call rather than PC changes

except for monitor ↔ enclave

Exceptions: avoid by preconditions, except interrupts

Enclave code spec: trashes all accessible state, then raises an exception.

Idea: everything between two world transitions is a single atomic action

Transitions are between two of enclave, monitor, and normal

Transitions need not be deterministic

Modeled as an unknown (integer) seed

17

Verification flow

18

State machine for non-sequential execution

19

Top level spec

Top level spec: a 𝑁𝑒𝑥𝑡 predicate describing the SMC handler.

𝐩𝐫𝐞𝐝𝐢𝐜𝐚𝐭𝐞 𝑠𝑚𝑐ℎ𝑎𝑛𝑑𝑙𝑒𝑟(𝑠: 𝑠𝑡𝑎𝑡𝑒, 𝑑: 𝑃𝑎𝑔𝑒𝐷𝑏, 𝑠′: 𝑠𝑡𝑎𝑡𝑒, 𝑑′: 𝑃𝑎𝑔𝑒𝐷𝑏)

Relates the concrete machine and abstract 𝑃𝑎𝑔𝑒𝐷𝐵 states (𝑠 and 𝑑)

just after taking an SMC exception from the OS,

to the final states (𝑠′ and 𝑑′) just prior to returning:

Only two SMCs involve enclave execution: Enter and Resume.

The rest are pure functions (𝑃𝑎𝑔𝑒𝐷𝐵, 𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑃𝑎𝑔𝑒𝐷𝐵, OK?).

20

Enter and Resume

Enter and Resume also relate two states and 𝑃𝑎𝑔𝑒𝐷𝐵s.

Spec forces the code to enter from a highly constrained state.

PT base = enclave PT base.

PT in memory matches abstract one in 𝑃𝑎𝑔𝑒𝐷𝐵.

TLB is consistent.

Secure pages and registers have correct content.

Monitor code can do what it likes as long as it makes a correct state.

21

Non-interference

Secrecy : publicly observable outputs depend only on observable inputs

Integrity: trusted outputs depend only on trusted inputs

How? Define an “observably equivalent” relation: ≈𝑎𝑑𝑣.

If the initial states of two executions are related, so are the final states.

The nondeterminism of enclave execution is modeled with an oracle,

an unknown integer seed (same idea as step objects in Armada).

22

Declassification

Violations of non-interference:

Type of exception from enclave

Return value from enclave Exit

Which pages are allocated from spare or returned to spare

The axioms that allow this are part of the TCB

23

Lessons (from the paper)

Need verification: Even a small code base has bugs

“Trusted” code can have bugs. Really means “untrustworthy”.

Tools can get better.

Failed verifications are hard to debug

Opaque functions are good, to guide the prover.

24

From https://medium.com/corda/intro-to-sgx-

from-http-to-enclaves-1bf38a3bf595
How can we verify that such a signature over a report comes from a genuine

Intel chip? We can’t. But Intel can, and this is what their Intel Attestation

Service is for. They have a REST API to send such signed reports to, and if

the report is valid and signed by a genuine Intel CPU then the IAS will reply

with an OK, signed with Intel’s root key.

Note: this is a simplification, the real protocol is more complex and includes

an additional “EPID provisioning” step, the CPU key isn’t used directly.

https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595
https://medium.com/corda/intro-to-sgx-from-http-to-enclaves-1bf38a3bf595

25

From the paper
Decouple the core hardware mechanisms such as memory encryption, ad-

dress-space isolation and [minimal] attestation from the management

thereof, which Komodo delegates to a privileged software monitor. We

show that the approach is practical and performant with a concrete imple-

mentation of a prototype in verified assembly code on ARM TrustZone.

What distinguishes SGX is memory encryption, independence from a large

untrusted OS, and the folklore intuition that hardware is more secure than

software. Komodo replaces folklore with formal verification. Komodo is

implemented as a software reference monitor in verified assembly code.

The SGX implementation consists of three components:

(i) encryption and integrity protection for a static region of physical memory

by an encryption engine in the memory controller,

(ii) a set of instructions to mess with enclaves, and

(iii) changes to the processor’s TLB miss and exception handling proce-

dures that enforce enclave protections on access to the encrypted memory

region.

26

Although it has no direct access to encrypted pages, the OS allocates and

maps them to enclaves, and although it cannot directly manipulate an en-

clave’s register state, the OS chooses when, and on which CPUs, to execute

enclave threads.

There are SGX instructions that manipulate the enclave page cache map

(EPCM) which stores metadata for every encrypted page, including its al-

location state, type, owning enclave, permissions, and virtual address. Ef-

fectively a reverse map of encrypted pages, the EPCM is also consulted on

a TLB miss to enforce enclave protections on memory—every page table

mapping must be consistent with the EPCM.

Threat model

Like SGX, we seek to protect the confidentiality and integrity of user-mode

code in an enclave from an attacker who has full control over a platform’s

privileged software (OS and hypervisor). Two variants: physical attacks on

memory in scope or not. If so, the attacker may access any RAM external

to the CPU package. This includes bus snooping and cold-boot [36] attacks.

27

Primitives

We rely on five hardware primitives:

• Isolated memory for monitor code/data and enclave pages, protected by

crypto against physical attacks (or on-chip for small enclaves). Else just

IOMMU.

• Protected execution for the monitor. In SGX, microcode. Could be DEC

Alpha PALcode, RISC-V machine mode, secure monitor mode of ARM

TrustZone.

o Secure control transfer between monitor code and normal execution

o Protection against unprogrammed control transfers in monitor code

or access to its registers. Not another (costly) layer of memory trans-

lation.

• Protected execution for enclaves. A typical user mode is OK, if pro-

tected from the OS.

o A TrustZone processor runs in one of two worlds: normal for a reg-

ular OS and applications run, and secure. Control registers are

banked.

28

• A root of trust for attestation. Either hardware or an early bootloader

attests to a secure hash of the monitor. The monitor in turn implements

enclave attestation.

• A source of randomness.

Strategy: build enclave bit by bit, to minimize monitor complexity. Some

Hyperkernel strategies. Then finalize before running.

High-level invariants on spec: it maintains consistency invariants on page

state (described in §5.2) and that it guarantees enclave confidentiality and

integrity (§6).

Have a formal model of ARM: core registers R0–R12, stack pointer (SP),

link register (LR), portions of the current and saved program status registers

(CPSR and SPSRs), privilege modes, control flow, interrupts, exceptions,

and semantics of 25 instructions.

No PC, instead if, while, call. But do model monitor entry and exit.

Model VM explicitly as part of load/store.

29

User mode execution is modeled as havoc; don’t prove anything about user

code, just that it can’t mess up the monitor.

TLB consistency: …

Dynamic allocation: Spare pages to or from the OS, and enclave can map

them.

A Komodo attestation is a message authentication code (MAC) using a se-

cret key generated at boot from a cryptographically secure source of ran-

domness. The MAC is computed over (i) the attesting enclave’s measure-

ment, and (ii) enclave-provided data, which may be used to bind a public

key-pair to the enclave and hence bootstrap encrypted communication with

code outside the enclave [56].

