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Not integrated. The tool is not inte-
grated into the developer’s workflow or 
takes too long to run; 

Not actionable. The warnings are not 
actionable; 

Not trustworthy. Users do not trust 
the results due to, say, false positives; 

Not manifest in practice. The report-
ed bug is theoretically possible, but the 
problem does not actually manifest in 
practice; 

SOFTWARE BUGS COST  developers and software 
companies a great deal of time and money. For example, 
in 2014, a bug in a widely used SSL implementation 
(“goto fail”) caused it to accept invalid SSL certificates,36 
and a bug related to date formatting caused a large-scale 
Twitter outage.23 Such bugs are often statically detectable 
and are, in fact, obvious upon reading the code or 
documentation yet still make it into production software. 

Previous work has reported on experience applying 
bug-detection tools to production software.6,3,7,29 

Although there are many such success stories for 
developers using static analysis tools, there are also 
reasons engineers do not always use static analysis 
tools or ignore their warnings,6,7,26,30 including: 

 key insights
 ˽ Static analysis authors should focus on 

the developer and listen to their feedback. 

 ˽ Careful developer workflow integration  
is key for static analysis tool adoption. 

 ˽ Static analysis tools can scale by 
crowdsourcing analysis development. 
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oper experience at Google is valuable. 
Terminology. We use the following 

terms: analysis tools run one or more 
“checks” over source code and identify “is-
sues” that may or may not represent actual 
software faults. We consider an issue to be 
an “effective false positive” if developers 
did not take positive action after seeing 
the issue.35 If an analysis incorrectly re-
ports an issue, but developers make the 
fix anyway to improve code readability 
or maintainability, that is not an effec-
tive false positive. If an analysis reports 
an actual fault, but the developer did not 
understand the fault and therefore took 
no action, that is an effective false posi-
tive. We make this distinction to empha-
size the importance of developer percep-
tion. Developers, not tool authors, will 
determine and act on a tool’s perceived 

Too expensive to fix. Fixing the de-
tected bug is too expensive or risky; and 

Warnings not understood. Users do 
not understand the warnings. 

Here, we describe how we have ap-
plied the lessons from Google’s pre-
vious experience with FindBugs Java 
analysis, as well as from the academic 
literature, to build a successful static 
analysis infrastructure used daily by 
most software engineers at Google. 
Google’s tooling detects thousands of 
problems per day that are fixed by en-
gineers, by their own choice, before 
the problematic code is checked into 
Google’s companywide codebase. 

Scope. We focus on static analysis tools 
that have become part of the core devel-
oper workflow at Google and used by 
a large fraction of Google’s develop-

ers. Many of the static analysis tools 
deployed at the scale of Google’s two-
billion-line codebase32 are relatively 
simple; running more sophisticated 
analyses at scale is not yet considered 
a priority. 

Note that developers outside of 
Google working in specialized fields 
(such as aerospace13 and medical 
devices21) may use additional static 
analysis tools and workflows. Like-
wise, developers working on specific 
types of projects (such as kernel 
code and device drivers4) may run 
ad hoc analyses. There has been lots 
of great work on static analysis, and 
we do not claim the lessons we report 
here are unique, but we do believe that 
collating and sharing what has worked 
to improve code quality and the devel-
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Pylint,34 and Golint18); 
Bug-finding tools that may extend 

the compiler (such as Error Prone,15 
ClangTidy,12 Clang Thread Safety 
Analysis,11 Govet,17 and the Checker 
Framework9), including, but not lim-
ited to, abstract-syntax-tree pattern-
match tools, type-based checks, and 
unused variable analysis; 

Analyzers that make calls to produc-
tion services (such as to check whether 
an employee mentioned in a code com-
ment is still employed at Google); and 

Analyzers that examine properties 
of build outputs (such as the size of 
binaries). 

The “goto fail” bug36 would have 
been caught by Google’s C++ linter 
that checks whether if statements 
are followed by braces. The code that 
caused the Twitter outage23 would 
not compile at Google because of 
an Error Prone compiler error, a 
pattern-based check that identifies 
date-formatting misuses. Google de-
velopers also use dynamic analysis 
tools (such as AddressSanitizer) to find 
buffer overruns and ThreadSanitizer 
to find data races.14 These tools are 
run during testing and sometimes also 
with production traffic. 

Integrated Development Environ-
ments (IDEs). An obvious workflow in-
tegration point to show static analy-
sis issues early in the development 
process is within an IDE. However, 
Google developers use a wide variety 
of editors, making it difficult to con-
sistently detect bugs by all developers 
prior to invoking the build tool. Al-
though Google does use analyses in-
tegrated with popular internal IDEs, 
requiring a particular IDE with analy-
ses enabled is a non-starter. 

Testing. Nearly all Google code in-
cludes corresponding tests, ranging 
from unit tests all the way to large-scale 
integration tests. Tests are integrated 
as a first-class concept in the build sys-
tem and hermetic and distributed, just 
like builds. For most projects, devel-
opers write and maintain the tests for 
their code; projects typically have no 
separate testing or quality-assurance 
group. Google’s continuous build-and-
test system runs tests on every commit 
and notifies a developer if the develop-
er’s change broke the build or caused 
a test to fail. It also supports testing a 
change before committing to avoid 

false-positive rate. 
How Google builds software. Here, 

we outline key aspects of Google’s 
software-development process. At 
Google, nearly all developer tools 
(with the exception of the develop-
ment environment) are centralized 
and standardized. Many parts of the 
infrastructure are built from scratch 
and owned by internal teams, giving 
the flexibility to experiment. 

Source control and code ownership. 
Google has developed and uses a sin-
gle-source control system and a single 
monolithic source code repository that 
holds (nearly) all Google proprietary 
source code.a Developers use “trunk-
based” development, with limited use 
of branches, typically for releases, not 
for features. Any engineer can change 
any piece of code, subject to approval by 
the code’s owners. Code ownership is 
path-based; an owner of a directory im-
plicitly owns all subdirectories as well. 

Build system. All code in Google’s re-
pository builds with a customized ver-
sion of the Bazel build system,5 requiring 
that builds be hermetic; that is, all inputs 
must be explicitly declared and stored 
in source control so the builds are easily 
distributed and parallelized. In Google’s 
build system, Java rules depend on the 
Java Development Kit and Java compiler 
that are checked into source control, and 
such binaries can be updated for all us-
ers simply by checking-in new versions. 
Builds are generally from source (at 
head), with few binary artifacts checked 
into the repository. Since all develop-
ers use the same build system, it is the 
source of truth for whether any given 
piece of code compiles without errors. 

Analysis tools. The static analysis 
tools Google uses are typically not com-
plex. Google does not have infrastruc-
ture support to run interprocedural 
or whole-program analysis at Google 
scale, nor does it use advanced static 
analysis techniques (such as separa-
tion logic7) at scale. Even simple checks 
have required analysis infrastructure 
supporting workflow integration to 
make them successful. The types of 
analyses deployed as part of the gen-
eral developer workflow include: 

Style checkers (such as Checkstyle,10 

a Google’s large open source projects (such as 
Android and Chrome) use separate infrastruc-
ture and their own workflows.

Developers, not 
tool authors, will 
determine and act 
on a tool’s perceived 
false-positive rate.
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debase through this strategy. 
We followed this design and built a sim-

ple pattern-based static analysis for Java 
called Error Prone15 on top of the javac Java 
compiler.1 The first check rolled out, called  
PreconditionsCheckNotNull,b detects  
cases in which a runtime precondition 
check trivially succeeds because 
the arguments in the method call 
are transposed, as when, say, 
checkNotNull("uid was null", uid) 
instead of checkNotNull(uid, "uid 
was null"). 

In order to launch checks like 
PreconditionsCheckNotNull with-
out breaking any continuous builds, 
the Error Prone team runs such checks 
over the whole codebase using a javac-
based MapReduce program, analo-
gous to ClangMR, called JavacFlume 
built using FlumeJava.8 JavacFlume 
emits a collection of suggested fixes, 
represented as diffs, that are then ap-
plied to produce a whole-codebase 
change. The Error Prone team uses an 
internal tool, Rosie,32 to split the large-
scale change into small changes that 
each affect a single project, test those 
changes, and send them for code re-
view to the appropriate team. The team 
reviews only those fixes that apply to 
its code, and, when they approve them, 
Rosie commits the change. All changes 
are eventually approved, the existing 
issues are fixed, and the team enables 
the compiler error. 

When we have surveyed develop-
ers who received these patches, 57% 
of them who received a proposed fix 
to checked-in code were happy to have 
received it, and 41% were neutral. Only 
2% responded negatively, saying, “It 
just created busywork for me.” 

Value of compiler checks. Compiler 
errors are displayed early in the devel-
opment process and integrated into 
the developer workflow. We have found 
expanding the set of compiler checks 
to be effective for improving code qual-
ity at Google. Because checks in Error 
Prone are self-contained and written 
against the javac abstract syntax tree, 
rather than bytecode (unlike Find-
Bugs), it is relatively easy for developers 
outside the team to contribute checks. 
Leveraging these contributions is vital 
in increasing Error Prone’s overall im-

b http://errorprone.info/bugpattern/ 
PreconditionsCheckNotNull

breaking downstream projects. 
Code review. Every commit to 

Google’s codebase goes through code 
review first. Although any developer can 
propose a change to any part of Google’s 
code, an owner of the code must review 
and approve the change before submis-
sion. In addition, even owners must 
have their code reviewed before com-
mitting a change. Code review happens 
through a centralized, web-based tool 
that is tightly integrated with other de-
velopment infrastructure. Static analy-
sis results are surfaced in code review. 

Releasing code. Google teams release 
frequently, with much of the release 
validation and deployment process 
automated through a “push on green” 
methodology,27 meaning an arduous, 
manual-release-validation process is 
not possible. If Google engineers find 
a bug in a production service, a new 
release can be cut and deployed to pro-
duction servers at relatively low cost 
compared with applications that must 
be shipped to users. 

What We Learned from FindBugs 
Earlier research, from 2008 to 2010, 
on static analysis at Google focused on 
Java analysis with FindBugs2,3: a stand-
alone tool created by William Pugh of 
the University of Maryland and David 
Hovemeyer of York College of Pennsyl-
vania that analyzes compiled Java class 
files and identifies patterns of code 
that lead to bugs. As of January 2018, 
FindBugs was available at Google only 
as a command-line tool used by few 
engineers. A small Google team, called 
“BugBot,” worked with Pugh on three 
failed attempts to integrate FindBugs 
into the Google developer workflow. 

We have thus learned several lessons: 
Attempt 1. Bug dashboard. Initially, 

in 2006, FindBugs was integrated as a 
centralized tool that ran nightly over 
the entire Google codebase, produc-
ing a database of findings engineers 
could examine through a dashboard. 
Although FindBugs found hundreds 
of bugs in Google’s Java codebase, the 
dashboard saw little use because a bug 
dashboard was outside the developers’ 
usual workflow, and distinguishing be-
tween new and existing static-analysis 
issues was distracting. 

Attempt 2. Filing bugs. The BugBot 
team then began to manually triage 
new issues found by each nightly Find-

Bugs run, filing bug reports for the 
most important ones. In May 2009, 
hundreds of Google engineers par-
ticipated in a companywide “Fixit” 
week, focusing on addressing Find-
Bugs warnings.3 They reviewed a total 
of 3,954 such warnings (42% of 9,473 
total), but only 16% (640) were actu-
ally fixed, despite the fact that 44% of 
reviewed issues (1,746) resulted in a 
bug report being filed. Although the 
Fixit validated that many issues found 
by FindBugs were actual bugs, a sig-
nificant fraction were not important 
enough to fix in practice. Manually tri-
aging issues and filing bug reports is 
not sustainable at a large scale. 

Attempt 3. Code review integration. 
The BugBot team then implemented 
a system in which FindBugs automati-
cally ran when a proposed change 
was sent for review, posting results as 
comments on the code-review thread, 
something the code-review team was 
already doing for style/formatting is-
sues. Google developers could sup-
press false positives and apply Find-
Bugs’ confidence in the result to filter 
comments. The tooling further at-
tempted to show only new FindBugs 
warnings but sometimes miscatego-
rized issues as new. Such integration 
was discontinued when the code-re-
view tool was replaced in 2011 for two 
main reasons: the presence of effec-
tive false positives caused developers 
to lose confidence in the tool, and de-
veloper customization resulted in an 
inconsistent view of analysis results. 

Make It a Compiler Workflow 
Concurrent with FindBugs experimen-
tation, the C++ workflow at Google 
was improving with the addition of 
new checks to the Clang compiler. The 
Clang team implemented new com-
piler checks, along with suggested 
fixes, then used ClangMR38 to run the 
updated compiler in a distributed way 
over the entire Google codebase, re-
fine checks, and programmatically fix 
all existing instances of a problem in 
the codebase. Once the codebase was 
cleansed of an issue, the Clang team 
enabled the new diagnostic as a com-
piler error (not a warning, which the 
Clang team found Google developers 
ignored) to break the build, a report 
difficult to disregard. The Clang team 
was very successful improving the co-
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the approach works, we wanted to 
show more high-impact bugs that do 
not meet the criteria we outlined ear-
lier for compiler errors and provide re-
sults for languages other than Java and 
C++. The second integration point for 
static analysis results is Google’s code 
review tool, Critique; static analysis 
results are exposed in Critique using 
Tricorder,35 Google’s program-analysis 
platform. As of January 2018, there was 
a compiler warnings-free default for 
C++ and Java builds at Google, with all 
analysis results either shown as com-
piler errors or in code review. 

Criteria for code-review checks. 
Unlike compile-time checks, analysis 
results shown during code review are 
allowed to include up to 10% effective 
false positives. There is an expectation 
during code review that feedback is not 
always perfect and that authors evalu-
ate proposed changes before applying 
them. A code review check at Google 
should fulfill several criteria: 

Be understandable. Be easy for any 
engineer to understand; 

Be actionable and easy to fix. The fix 
may require more time, thought, or ef-
fort than a compiler check, and the re-
sult should include guidance as to how 
the issue might indeed be fixed; 

Produce less than 10% effective false 
positives. Developers should feel the 
check is pointing out an actual issue at 
least 90% of the time;c and 

Have the potential for significant im-
pact on code quality. The issues may 
not affect correctness, but developers 
should take them seriously and delib-
erately choose to fix them. 

Some issues are severe enough to 
be flagged in the compiler, but pro-
ducing them or developing an auto-
mated fix is not feasible. For example, 
fixing an issue may require significant 
restructuring of the code. Enabling 
these checks as compiler errors would 
require manual cleanup of existing in-
stances that is infeasible on the scale of 
Google’s vast codebase. Analysis tools 
show these checks in code review pre-
vent new occurrences of the issue, al-
lowing the developer to decide how to 

c Although this number was initially chosen by 
the first author somewhat arbitrarily, it seems 
to be a sweet spot for developer satisfaction 
and matches the cutoff for similar systems in 
other companies.

make an appropriate fix. Code review is 
also a good context for reporting rela-
tively less-important issues like stylis-
tic problems or opportunities to sim-
plify code. In our experience, reporting 
them at compile-time is frustrating for 
developers and makes it more difficult 
to iterate and debug quickly; for ex-
ample, an unreachable code detector 
might hinder attempts to temporarily 
disable a block of code for debugging. 
However, at code-review time, develop-
ers are preparing their code to be seen; 
they are already in a critical mindset 
and more receptive to seeing readabil-
ity and stylistic details. 

Tricorder. Tricorder is designed to 
be easily extensible and support many 
different kinds of program-analysis 
tools, including static and dynamic 
analyses. We showed a suite of Error 
Prone checks in Tricorder that cannot 
be enabled as compiler errors. Error 
Prone also inspired a new set of analy-
ses for C++ that are integrated with Tri-
corder and called ClangTidy.12 Tricord-
er analyzers report results for more 
than 30 languages, support simple 
syntactic analyses like style checkers, 
leverage compiler information for Java, 
JavaScript, and C++, and are straight-
forward to integrate with production 
data (such as about jobs that are cur-
rently running). Tricorder continues 
to be successful at Google because it 
is a plug-in model supporting an eco-
system of analysis writers, actionable 
issues are highlighted during the code-
review process, and it provides feed-
back channels to improve analyzers 
and ensure analyzer developers act on 
the feedback. 

Empower users to contribute. As of 
January 2018, Tricorder included 146 
analyzers, with 125 contributed from 
outside the Tricorder team and seven 
plug-in systems for hundreds of addi-
tional checks (such as ErrorProne and 
ClangTidy, which comprise two of the 
seven analyzers plug-in systems). 

Provide fixes and involve reviewers. 
Tricorder checks can provide sug-
gested fixes that can be directly ap-
plied from the code-review tool. They 
are seen by both the reviewer and the 
author, and the reviewer can ask the 
author to fix the problematic code sim-
ply by clicking a “Please fix” button on 
the analysis result. Reviewers typically 
withhold approval of a change until 

pact. As of January 2018, 733 checks 
had been contributed by 162 authors. 

Reporting issues sooner is better. 
Google’s centralized build system logs 
all builds and build results, so we iden-
tified all users who had seen one of the 
error messages in a given time window. 
We sent a survey to developers who 
recently encountered a compiler er-
ror and developers who had received a 
patch with a fix for the same problem. 
Google developers perceive that issues 
flagged at compile time (as opposed 
to patches for checked-in code) catch 
more important bugs; for example, 
survey participants deemed 74% of 
the issues flagged at compile time as 
“real problems,” compared to 21% of 
those found in checked-in code. In 
addition, survey participants deemed 
6% of the issues found at compiletime 
(vs. 0% in checked-in code) “critical.” 
This result is explained by the “survi-
vor effect”;3 that is, by the time code is 
submitted, the errors are likely to have 
been caught by more expensive means 
(such as testing and code review). 
Moving as many checks into the com-
piler as possible is one proven way to 
avoid those costs. 

Criteria for compiler checks. To scale-
up our work, we have defined criteria for 
enabling checks in the compiler, setting 
the bar high, since breaking the com-
pile would be a significant disruption. A 
compiler check at Google should be eas-
ily understood; actionable and easy to fix 
(whenever possible, the error should in-
clude a suggested fix that can be applied 
mechanically); produce no effective false 
positives (the analysis should never stop 
the build for correct code); and report 
issues affecting only correctness rather 
than style or best practices. 

The primary goal of an analyzer 
satisfying these criteria is not simply 
to detect faults but to automatically 
fix all instances of a prospective com-
piler error throughout the codebase. 
However, such criteria limit the scope 
of the checks the Error Prone team 
enables when compiling code; many 
issues that cannot always be detected 
correctly or mechanically fixed are still 
serious problems. 

Warn During Code Review 
Once the Error Prone team had built 
the infrastructure needed to detect is-
sues at compile time, and had proved 
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Analysis results that are shown at com-
pilation time must reach a much high-
er bar for quality and accuracy that is 
not possible to meet for some analyses 
that can still identify serious faults. Af-
ter the review and code are checked in, 
the friction confronting developers for 
making changes increases. Developers 
are thus hesitant to make additional 
changes to code that has already been 
tested and released, and lower severity 
and less-important issues are unlikely 
to be addressed. Other analysis proj-
ects among major software-develop-
ment organizations (such as Facebook 
Infer analysis for Android/iOS apps7) 
have also highlighted code review as a 
key point for reporting analysis results. 

Expand Analyzer Reach 
As Google developer-users have 
gained trust in the results from Tri-
corder analyzers, they continue to 
request further analyses. Tricorder 
addresses this in two ways: allow-
ing project-level customization and 
adding analysis results at additional 
points in the developer workflow. In 
this section, we also touch on the rea-
sons Google does not yet leverage more 
sophisticated analysis techniques as 
part of its core developer workflow. 

Project-level customization. Not all 
requested analyzers are equally valu-
able throughout the Google codebase; 
for example, some analyzers are asso-
ciated with higher false-positive rates 
and so would have correspondingly 
high effective false-positive rates or 
require specific project configuration 
to be useful. These analyzers all have 
value but only for the right team. 

To satisfy these requests, we aimed 
to make Tricorder customizable. Our 
previous experience with customiza-
tion for FindBugs did not end well; us-
er-specific customization caused dis-
crepancies within and across teams 
and resulted in declining use of tools. 
Because each user could see a differ-
ent view of issues, there was no way to 
ensure a particular issue was seen by 
everyone working on a project. If de-
velopers removed all unused imports 
from their team’s code, the fix would 
quickly backslide if even a single oth-
er developer was not consistent about 
removing unused imports. 

To avoid such problems, Tricorder 
allows configuration only at the proj-

all their comments, manual and auto-
mated, have been addressed. 

Iterate on feedback from users. In 
addition to the “Please fix” button, 
Tricorder also provides a “Not useful” 
button that reviewers or proposers can 
click to express that they do not like the 
analysis finding. Clicking automati-
cally files a bug in the issue tracker, 
routing it to the team that owns the an-
alyzer. The Tricorder team tracks such 
not-useful clicks, computing the ratio 
of “Please fix” vs. “Not useful” clicks. 
If the ratio for an analyzer goes above 
10%, the Tricorder team disables the 
analyzer until the author(s) improve 
it. While the Tricorder team has rarely 
had to permanently disable an ana-
lyzer, it has disabled an analyzer (on 
several occasions) while the analyzer 
author is removing and revising sub-
checks that were particularly noisy. 

The bugs being filed often lead to 
improvement in the analyzers that in 
turn greatly improves developers’ satis-
faction with those analyzers; for exam-
ple, the Error Prone team developed, in 
2014, an Error Prone check that flagged 
when too many arguments were being 
passed to a printf-like function in 
Guava.19 The printf-like function did 
not actually accept all printf specifi-
ers, accepting only %s. About once per 
week the Error Prone team would re-
ceive a “Not useful” bug claiming the 
analysis was incorrect because the 
number of format specifiers in the 
bug filers’ code matched the number 
of arguments passed. In every case, 
the analysis was correct, and the user 
was trying to pass specifiers other 
than %s. The team thus changed the 
diagnostic text to state directly that 
the function accepts only the %s 
placeholder and stopped getting bugs 
filed about that check. 

Scale of Tricorder. As of January 2018, 
Tricorder had analyzed approximately 
50,000 code review changes per day. 
During peak hours, there were three 
analysis runs per second. Reviewers 
clicked “Please Fix” more than 5,000 
times per day, and authors applied the 
automated fixes approximately 3,000 
times per day. And Tricorder analyzers 
received “Not useful” clicks 250 times 
per day. 

The success of code-review analy-
sis suggests it occupies a “sweet spot” 
in the developer workflow at Google. 

Even in a mature 
codebase with  
full test coverage 
and a rigorous  
code-review 
process,  
bugs slip by. 
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Command line support. The Tricord-
er team added command-line support 
for developers who are, in effect, code 
janitors, regularly going through and 
scrubbing their team’s codebase of var-
ious analysis warnings. These develop-
ers are also very familiar with the types 
of fixes each analysis will generate and 
have high trust in specific analyzers. 
Developers can thus use a command-
line tool to automatically apply all fixes 
from a given analysis and generate 
cleanup changes; 

Gating commits. Some teams want 
specific analyzers to actually block 
commits, rather than just appear in the 
code-review tool. The ability to block 
commits is commonly requested by 
teams that have highly specific custom 
checks with no false positives, usually 
for a custom DSL or library; and 

Results in code browsing. Code brows-
ing works best for showing the scale of 
a problem across a large project (or an 
entire codebase). For example, analysis 
results when browsing code about a dep-
recated API can show how much work a 
migration entails; or some security and 
privacy analyses are global in scope and 
require specialized teams to vet the re-
sults before determining whether there 
is indeed a problem. Since analysis re-
sults are not displayed by default, the 
code browser allows specific teams to en-
able an analysis layer and then scan the 
entire codebase and vet the results with-
out disrupting other developers with 
distractions from these analyzers. If an 
analysis result has an associated fix, then 
developers can apply the fix with a single 
click from the code-browsing tool. The 
code browser is also ideal for displaying 
results from analyses that utilize produc-
tion data, as this data is not available un-
til code is committed and running. 

Sophisticated analyses. All of the 
static analyses deployed widely at 
Google are relatively simple, although 
some teams work on project-specific 
analysis frameworks for limited do-
mains (such as Android apps) that do 
interprocedural analysis. Interproce-
dural analysis at Google scale is techni-
cally feasible. However, implementing 
such an analysis is very challenging. 
All of Google’s code resides in a single 
monolithic source code repository, as 
discussed, so, conceptually, any code 
in the repository can be part of any 
binary. It is thus possible to imagine 

ect level, ensuring that anyone making 
a change to a particular project sees a 
consistent view of the analysis results 
relevant to that project. Maintaining 
a consistent view has enabled several 
types of analyzers to do the following: 

Produce dichotomous results. For 
example, Tricorder includes an ana-
lyzer for protocol buffer definitions33 
that identifies changes that are not 
backward compatible. It is used by de-
veloper teams that ensure persistent 
information from protocol buffers in 
their serialized form but is annoying 
for teams that do not store data in this 
form. Another example is an analyzer 
that suggests using Guava37 or Java 7 idi-
oms that do not make sense for proj-
ects that cannot use these libraries 
or language features; 

Need a particular setup or in-code an-
notations. For example, teams can only 
use the Checker Framework’s nullness 
analysis9 if their code is annotated ap-
propriately. Another analysis, when 
configured, will check the increase in 
binary size and method count for a par-
ticular Android binary and warn devel-
opers if there is a significant increase 
or if they are approaching a hard limit; 

Support custom domain-specific lan-
guages (DSLs) and team-specific cod-
ing guidelines. Some Google software 
development teams have developed 
small DSLs with associated validators 
they wish to run. Other teams have 
developed their own best practices for 
readability and maintainability and 
would like to enforce those checks; and 

Are highly resource-intensive. An ex-
ample is hybrid analyses that incorpo-
rate results from dynamic analysis. Such 
analyses provide high value for some 
teams but are too costly or slow for all. 

As of January 2018, there were ap-
proximately 70 optional analyses 
available within Google, and 2,500 
projects had enabled at least one of 
them. Dozens of teams across the 
company are actively developing a 
new analyzer, most outside the devel-
oper-tools group. 

Additional workflow integration 
points. As developers have gained trust 
in the tools, they have also requested 
further integration into their work-
flow. Tricorder now provides analysis 
results through a command-line tool, 
a continuous integration system, and a 
code-browsing tool. 

Engineers working 
on static analysis 
must demonstrate 
impact through 
hard data. 
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a tool wastes developer time with false 
positives and low-priority issues, devel-
opers will lose faith and ignore results. 

Do not just find bugs, fix them. To 
sell a static analysis tool, a typical ap-
proach is to enumerate a significant 
number of issues that are present in 
a codebase. The intent is to influence 
decision makers by indicating a po-
tential ability to correct the underly-
ing bugs or prevent them in the future. 
However, that potential will remain 
unrealized if developers are not incen-
tivized to act. This is a fundamental 
flaw: analysis tools measure their util-
ity by the number of issues they iden-
tify, while integration attempts fail 
due to the low number of bugs actu-
ally fixed or prevented. Instead, Google 
static analysis teams take responsibil-
ity for fixing, as well as finding, bugs, 
and measure success accordingly. 
Focusing on fixing bugs has ensured 
that tools provide actionable advice30 
and minimize false positives. In many 
cases, fixing bugs is as easy as finding 
them through automated tooling. Even 
for difficult-to-fix issues, research over 
the past five years has highlighted new 
techniques for automatically creating 
fixes for static analysis issues.22,28,31 

Crowdsource analysis development. 
Although typical static analysis tools 
require expert developers to write the 
analyses, experts may be scarce and 
not actually know what checks will 
have the greatest impact. Moreover,  
analysis experts are typically not do-
main experts (such as those working 
with APIs, languages, and security). 
With FindBugs integration, only a 
small number of Googlers under-
stood how to write new checks, so 
the small BugBot team had to do all 
the work themselves. This limited 
the velocity of adding new checks 
and prevented others from contribut-
ing their domain knowledge. Teams 
like Tricorder now focus on lower-
ing the bar to developer-contributed 
checks, without requiring prior static 
analysis experience. For example, the 
Google tool Refaster37 allows devel-
opers to write checks by specifying 
example before and after code snip-
pets. Since contributors are frequent-
ly motivated to contribute after de-
bugging faulty code themselves, new 
checks are biased toward those that 
save developer time. 

a scenario in which analysis results 
for a particular code review would re-
quire analyzing the entire repository. 
Although Facebook’s Infer7,25 focuses 
on compositional analysis in order to 
scale separation-logic-based analysis 
to multimillion-line repositories, scal-
ing such analysis to Google’s multibil-
lion-line repository would still take sig-
nificant engineering effort. 

As of January 2018, implementing 
a system to do more sophisticated 
analyses has not been a priority for 
Google since: 

Large investment. The up-front in-
frastructure investment would be pro-
hibitive; 

Work needed to reduce false-positive 
rates. Analysis teams would have to 
develop techniques to dramatically 
reduce false-positive rates for many 
research analyzers and/or severely re-
strict which errors are displayed, as 
with Infer; 

Still more to implement. Analysis 
teams still have plenty more “simple” ana-
lyzers to implement and integrate; and 

High upfront cost. We have found the 
utility of such “simple” analyzers to be 
high, a core motivation of FindBugs.24 
In contrast, even determining the cost-
benefit ratio for more complicated 
checks has a high up-front cost. 

Note this cost-benefit analysis may 
be very different for developers outside 
of Google working in specialized fields 
(such as aerospace13 and medical de-
vices21) or on specific projects (such as 
device drivers4 and phone apps7). 

Lessons 
Our experience attempting to integrate 
static analysis into Google’s workflow 
taught us valuable lessons: 

Finding bugs is easy. When a code-
base is large enough, it will contain 
practically any imaginable code pat-
tern. Even in a mature codebase with 
full test coverage and a rigorous code-
review process, bugs slip by. Some-
times the problem is not obvious from 
local inspection, and sometimes bugs 
are introduced by seemingly harmless 
refactorings. For example, consider the 
following code snippet hashing a field 
f of type long 

result =  
 31 * result  
  + (int) (f ^ (f >>> 32)); 

Now consider what happens if the 
developer changes the type of f to int. 
The code continues to compile, but the 
right shift by 32 becomes a no-op, the 
field is XORed with itself, and the hash 
for the field becomes a constant 0. The 
result is f no longer affects the value 
produced by the hashCode method. 
The right shift by more than 31 is stati-
cally detectable by any tool able to com-
pute the type of f, yet we fixed 31 occur-
rences of this bug in Google’s codebase 
while enabling the check as a compiler 
error in Error Prone. 

Since finding bugs is easy,24 Google 
uses simple tooling to detect bug pat-
terns. Analysis writers then tune the 
checks based on results from running 
over Google code. 

Most developers will not go out of their 
way to use static analysis tools. Following 
in the footsteps of many commercial 
tools, Google’s initial implementation of 
FindBugs relied on engineers choosing 
to visit a central dashboard to see the is-
sues found in their projects, though few 
of them actually made such a visit. Find-
ing bugs in checked-in code (that may al-
ready be deployed and running without 
user-visible problems) is too late. To en-
sure that most or all engineers see static-
analysis warnings, analysis tools must 
be integrated into the workflow and en-
abled by default for everyone. Instead of 
providing bug dashboards, projects like 
Error Prone extend the compiler with 
additional checks, and surface analysis 
results in code review. 

Developer happiness is key. In our 
experience and in the literature, many 
attempts to integrate static analysis 
into a software-development organi-
zation fail. At Google, there is typically 
no mandate from management that 
engineers use static analysis tools. 
Engineers working on static analysis 
must demonstrate impact through 
hard data. For a static analysis project 
to succeed, developers must feel they 
benefit from and enjoy using it. 

To build a successful analysis plat-
form, we have built tools that deliver 
high value for developers. The Tri-
corder team keeps careful accounting 
of issues fixed, performs surveys to un-
derstand developer sentiment, makes 
it easy to file bugs against the analy-
sis tools, and uses all this data to jus-
tify continued investment. Developers 
need to build trust in analysis tools. If 
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or poor reporting give them a justifica-
tion for inaction. Analysis teams are 
quite careful to enable a check as an 
error or warning only after vetting it 
against the criteria described here, so 
developers are rarely inundated, con-
fused, or annoyed by analysis results. 
Surveys and feedback channels are an 
important quality control for this proc-
ess. Now that developers have gained 
trust in analysis results, the Tricorder 
team is fulfilling requests for more 
analyses surfaced in more locations in 
the Google developer workflow. 

We have built a successful static 
analysis infrastructure at Google that 
prevents hundreds of bugs per day 
from entering the Google codebase, 
both at compiletime and during code 
reviews. We hope others can benefit 
from our experience to successfully 
integrate static analyses into their 
own workflows.  
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Conclusion 
Our most important insight is that 
careful developer workflow integration 
is key for static analysis tool adoption. 
While tool authors may believe devel-
opers should be delighted by a list of 
probable defects in code they have writ-
ten, in practice we did not find such a 
list motivates developers to fix the de-
fects. As analysis-tool developers, we 
must measure our success in terms of 
defects corrected, not the number pre-
sented to developers. This means our 
responsibility extends far beyond the 
analysis tool itself.

We advocate for a system focused on 
pushing workflow integration as early 
as possible. When possible, checks are 
enabled as compiler errors. To avoid 
breaking builds, tool writers take on 
the task of first fixing all the existing 
issues in the codebase, allowing us to 
“ratchet” the quality of Google’s code-
base one small step at a time, without 
regressions. Since we present the er-
rors in the compiler, developers en-
counter them immediately after writ-
ing code, while they are still amenable 
to making changes. To enable this, 
we have developed infrastructure for 
running analyses and producing fixes 
over the whole vast Google codebase. 
We also benefit from code review and 
submission automation that allows a 
change to hundreds of files, as well as 
an engineering culture in which chang-
es to legacy code are typically approved 
because improving the code wins over 
risk aversion. 

Code review is a sweet spot for dis-
playing analysis warnings before code 
is committed. In order to ensure devel-
opers are receptive to analysis results, 
Tricorder presents issues only when a 
developer is changing the code in ques-
tion, before the change is committed, 
and the Tricorder team applies a set of 
criteria to selecting what warnings to 
display. Tricorder further gathers user 
data in the code-review tool that is used 
to detect any analyses that produce un-
acceptable numbers of negative reac-
tions. The Tricorder team minimizes 
effective false positives by disabling 
misbehaving analyses. 

To overcome warning blindness, 
we have worked to regain the trust of 
Google engineers, finding Google de-
velopers have a strong bias to ignore 
static analysis, and any false positives 




