
58 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

Lessons
from Building
Static Analysis
Tools at Google

DOI:10.1145/3188720

For a static analysis project to succeed,
developers must feel they benefit from
and enjoy using it.

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE,
LIAM MILLER-CUSHON, AND CIERA JASPAN

Not integrated. The tool is not inte-
grated into the developer’s workflow or
takes too long to run;

Not actionable. The warnings are not
actionable;

Not trustworthy. Users do not trust
the results due to, say, false positives;

Not manifest in practice. The report-
ed bug is theoretically possible, but the
problem does not actually manifest in
practice;

SOFTWARE BUGS COST developers and software
companies a great deal of time and money. For example,
in 2014, a bug in a widely used SSL implementation
(“goto fail”) caused it to accept invalid SSL certificates,36
and a bug related to date formatting caused a large-scale
Twitter outage.23 Such bugs are often statically detectable
and are, in fact, obvious upon reading the code or
documentation yet still make it into production software.

Previous work has reported on experience applying
bug-detection tools to production software.6,3,7,29

Although there are many such success stories for
developers using static analysis tools, there are also
reasons engineers do not always use static analysis
tools or ignore their warnings,6,7,26,30 including:

 key insights
 ˽ Static analysis authors should focus on

the developer and listen to their feedback.

 ˽ Careful developer workflow integration
is key for static analysis tool adoption.

 ˽ Static analysis tools can scale by
crowdsourcing analysis development.

contributed articles

http://dx.doi.org/10.1145/3188720

APRIL 2018 | VOL. 61 | NO. 4 | COMMUNICATIONS OF THE ACM 59

I
M

A
G

E
 B

Y
 I

G
O

R
 K

I
S

S
E

L
E

V

oper experience at Google is valuable.
Terminology. We use the following

terms: analysis tools run one or more
“checks” over source code and identify “is-
sues” that may or may not represent actual
software faults. We consider an issue to be
an “effective false positive” if developers
did not take positive action after seeing
the issue.35 If an analysis incorrectly re-
ports an issue, but developers make the
fix anyway to improve code readability
or maintainability, that is not an effec-
tive false positive. If an analysis reports
an actual fault, but the developer did not
understand the fault and therefore took
no action, that is an effective false posi-
tive. We make this distinction to empha-
size the importance of developer percep-
tion. Developers, not tool authors, will
determine and act on a tool’s perceived

Too expensive to fix. Fixing the de-
tected bug is too expensive or risky; and

Warnings not understood. Users do
not understand the warnings.

Here, we describe how we have ap-
plied the lessons from Google’s pre-
vious experience with FindBugs Java
analysis, as well as from the academic
literature, to build a successful static
analysis infrastructure used daily by
most software engineers at Google.
Google’s tooling detects thousands of
problems per day that are fixed by en-
gineers, by their own choice, before
the problematic code is checked into
Google’s companywide codebase.

Scope. We focus on static analysis tools
that have become part of the core devel-
oper workflow at Google and used by
a large fraction of Google’s develop-

ers. Many of the static analysis tools
deployed at the scale of Google’s two-
billion-line codebase32 are relatively
simple; running more sophisticated
analyses at scale is not yet considered
a priority.

Note that developers outside of
Google working in specialized fields
(such as aerospace13 and medical
devices21) may use additional static
analysis tools and workflows. Like-
wise, developers working on specific
types of projects (such as kernel
code and device drivers4) may run
ad hoc analyses. There has been lots
of great work on static analysis, and
we do not claim the lessons we report
here are unique, but we do believe that
collating and sharing what has worked
to improve code quality and the devel-

60 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

contributed articles

Pylint,34 and Golint18);
Bug-finding tools that may extend

the compiler (such as Error Prone,15
ClangTidy,12 Clang Thread Safety
Analysis,11 Govet,17 and the Checker
Framework9), including, but not lim-
ited to, abstract-syntax-tree pattern-
match tools, type-based checks, and
unused variable analysis;

Analyzers that make calls to produc-
tion services (such as to check whether
an employee mentioned in a code com-
ment is still employed at Google); and

Analyzers that examine properties
of build outputs (such as the size of
binaries).

The “goto fail” bug36 would have
been caught by Google’s C++ linter
that checks whether if statements
are followed by braces. The code that
caused the Twitter outage23 would
not compile at Google because of
an Error Prone compiler error, a
pattern-based check that identifies
date-formatting misuses. Google de-
velopers also use dynamic analysis
tools (such as AddressSanitizer) to find
buffer overruns and ThreadSanitizer
to find data races.14 These tools are
run during testing and sometimes also
with production traffic.

Integrated Development Environ-
ments (IDEs). An obvious workflow in-
tegration point to show static analy-
sis issues early in the development
process is within an IDE. However,
Google developers use a wide variety
of editors, making it difficult to con-
sistently detect bugs by all developers
prior to invoking the build tool. Al-
though Google does use analyses in-
tegrated with popular internal IDEs,
requiring a particular IDE with analy-
ses enabled is a non-starter.

Testing. Nearly all Google code in-
cludes corresponding tests, ranging
from unit tests all the way to large-scale
integration tests. Tests are integrated
as a first-class concept in the build sys-
tem and hermetic and distributed, just
like builds. For most projects, devel-
opers write and maintain the tests for
their code; projects typically have no
separate testing or quality-assurance
group. Google’s continuous build-and-
test system runs tests on every commit
and notifies a developer if the develop-
er’s change broke the build or caused
a test to fail. It also supports testing a
change before committing to avoid

false-positive rate.
How Google builds software. Here,

we outline key aspects of Google’s
software-development process. At
Google, nearly all developer tools
(with the exception of the develop-
ment environment) are centralized
and standardized. Many parts of the
infrastructure are built from scratch
and owned by internal teams, giving
the flexibility to experiment.

Source control and code ownership.
Google has developed and uses a sin-
gle-source control system and a single
monolithic source code repository that
holds (nearly) all Google proprietary
source code.a Developers use “trunk-
based” development, with limited use
of branches, typically for releases, not
for features. Any engineer can change
any piece of code, subject to approval by
the code’s owners. Code ownership is
path-based; an owner of a directory im-
plicitly owns all subdirectories as well.

Build system. All code in Google’s re-
pository builds with a customized ver-
sion of the Bazel build system,5 requiring
that builds be hermetic; that is, all inputs
must be explicitly declared and stored
in source control so the builds are easily
distributed and parallelized. In Google’s
build system, Java rules depend on the
Java Development Kit and Java compiler
that are checked into source control, and
such binaries can be updated for all us-
ers simply by checking-in new versions.
Builds are generally from source (at
head), with few binary artifacts checked
into the repository. Since all develop-
ers use the same build system, it is the
source of truth for whether any given
piece of code compiles without errors.

Analysis tools. The static analysis
tools Google uses are typically not com-
plex. Google does not have infrastruc-
ture support to run interprocedural
or whole-program analysis at Google
scale, nor does it use advanced static
analysis techniques (such as separa-
tion logic7) at scale. Even simple checks
have required analysis infrastructure
supporting workflow integration to
make them successful. The types of
analyses deployed as part of the gen-
eral developer workflow include:

Style checkers (such as Checkstyle,10

a Google’s large open source projects (such as
Android and Chrome) use separate infrastruc-
ture and their own workflows.

Developers, not
tool authors, will
determine and act
on a tool’s perceived
false-positive rate.

APRIL 2018 | VOL. 61 | NO. 4 | COMMUNICATIONS OF THE ACM 61

contributed articles

debase through this strategy.
We followed this design and built a sim-

ple pattern-based static analysis for Java
called Error Prone15 on top of the javac Java
compiler.1 The first check rolled out, called
PreconditionsCheckNotNull,b detects
cases in which a runtime precondition
check trivially succeeds because
the arguments in the method call
are transposed, as when, say,
checkNotNull("uid was null", uid)
instead of checkNotNull(uid, "uid
was null").

In order to launch checks like
PreconditionsCheckNotNull with-
out breaking any continuous builds,
the Error Prone team runs such checks
over the whole codebase using a javac-
based MapReduce program, analo-
gous to ClangMR, called JavacFlume
built using FlumeJava.8 JavacFlume
emits a collection of suggested fixes,
represented as diffs, that are then ap-
plied to produce a whole-codebase
change. The Error Prone team uses an
internal tool, Rosie,32 to split the large-
scale change into small changes that
each affect a single project, test those
changes, and send them for code re-
view to the appropriate team. The team
reviews only those fixes that apply to
its code, and, when they approve them,
Rosie commits the change. All changes
are eventually approved, the existing
issues are fixed, and the team enables
the compiler error.

When we have surveyed develop-
ers who received these patches, 57%
of them who received a proposed fix
to checked-in code were happy to have
received it, and 41% were neutral. Only
2% responded negatively, saying, “It
just created busywork for me.”

Value of compiler checks. Compiler
errors are displayed early in the devel-
opment process and integrated into
the developer workflow. We have found
expanding the set of compiler checks
to be effective for improving code qual-
ity at Google. Because checks in Error
Prone are self-contained and written
against the javac abstract syntax tree,
rather than bytecode (unlike Find-
Bugs), it is relatively easy for developers
outside the team to contribute checks.
Leveraging these contributions is vital
in increasing Error Prone’s overall im-

b http://errorprone.info/bugpattern/
PreconditionsCheckNotNull

breaking downstream projects.
Code review. Every commit to

Google’s codebase goes through code
review first. Although any developer can
propose a change to any part of Google’s
code, an owner of the code must review
and approve the change before submis-
sion. In addition, even owners must
have their code reviewed before com-
mitting a change. Code review happens
through a centralized, web-based tool
that is tightly integrated with other de-
velopment infrastructure. Static analy-
sis results are surfaced in code review.

Releasing code. Google teams release
frequently, with much of the release
validation and deployment process
automated through a “push on green”
methodology,27 meaning an arduous,
manual-release-validation process is
not possible. If Google engineers find
a bug in a production service, a new
release can be cut and deployed to pro-
duction servers at relatively low cost
compared with applications that must
be shipped to users.

What We Learned from FindBugs
Earlier research, from 2008 to 2010,
on static analysis at Google focused on
Java analysis with FindBugs2,3: a stand-
alone tool created by William Pugh of
the University of Maryland and David
Hovemeyer of York College of Pennsyl-
vania that analyzes compiled Java class
files and identifies patterns of code
that lead to bugs. As of January 2018,
FindBugs was available at Google only
as a command-line tool used by few
engineers. A small Google team, called
“BugBot,” worked with Pugh on three
failed attempts to integrate FindBugs
into the Google developer workflow.

We have thus learned several lessons:
Attempt 1. Bug dashboard. Initially,

in 2006, FindBugs was integrated as a
centralized tool that ran nightly over
the entire Google codebase, produc-
ing a database of findings engineers
could examine through a dashboard.
Although FindBugs found hundreds
of bugs in Google’s Java codebase, the
dashboard saw little use because a bug
dashboard was outside the developers’
usual workflow, and distinguishing be-
tween new and existing static-analysis
issues was distracting.

Attempt 2. Filing bugs. The BugBot
team then began to manually triage
new issues found by each nightly Find-

Bugs run, filing bug reports for the
most important ones. In May 2009,
hundreds of Google engineers par-
ticipated in a companywide “Fixit”
week, focusing on addressing Find-
Bugs warnings.3 They reviewed a total
of 3,954 such warnings (42% of 9,473
total), but only 16% (640) were actu-
ally fixed, despite the fact that 44% of
reviewed issues (1,746) resulted in a
bug report being filed. Although the
Fixit validated that many issues found
by FindBugs were actual bugs, a sig-
nificant fraction were not important
enough to fix in practice. Manually tri-
aging issues and filing bug reports is
not sustainable at a large scale.

Attempt 3. Code review integration.
The BugBot team then implemented
a system in which FindBugs automati-
cally ran when a proposed change
was sent for review, posting results as
comments on the code-review thread,
something the code-review team was
already doing for style/formatting is-
sues. Google developers could sup-
press false positives and apply Find-
Bugs’ confidence in the result to filter
comments. The tooling further at-
tempted to show only new FindBugs
warnings but sometimes miscatego-
rized issues as new. Such integration
was discontinued when the code-re-
view tool was replaced in 2011 for two
main reasons: the presence of effec-
tive false positives caused developers
to lose confidence in the tool, and de-
veloper customization resulted in an
inconsistent view of analysis results.

Make It a Compiler Workflow
Concurrent with FindBugs experimen-
tation, the C++ workflow at Google
was improving with the addition of
new checks to the Clang compiler. The
Clang team implemented new com-
piler checks, along with suggested
fixes, then used ClangMR38 to run the
updated compiler in a distributed way
over the entire Google codebase, re-
fine checks, and programmatically fix
all existing instances of a problem in
the codebase. Once the codebase was
cleansed of an issue, the Clang team
enabled the new diagnostic as a com-
piler error (not a warning, which the
Clang team found Google developers
ignored) to break the build, a report
difficult to disregard. The Clang team
was very successful improving the co-

62 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

contributed articles

the approach works, we wanted to
show more high-impact bugs that do
not meet the criteria we outlined ear-
lier for compiler errors and provide re-
sults for languages other than Java and
C++. The second integration point for
static analysis results is Google’s code
review tool, Critique; static analysis
results are exposed in Critique using
Tricorder,35 Google’s program-analysis
platform. As of January 2018, there was
a compiler warnings-free default for
C++ and Java builds at Google, with all
analysis results either shown as com-
piler errors or in code review.

Criteria for code-review checks.
Unlike compile-time checks, analysis
results shown during code review are
allowed to include up to 10% effective
false positives. There is an expectation
during code review that feedback is not
always perfect and that authors evalu-
ate proposed changes before applying
them. A code review check at Google
should fulfill several criteria:

Be understandable. Be easy for any
engineer to understand;

Be actionable and easy to fix. The fix
may require more time, thought, or ef-
fort than a compiler check, and the re-
sult should include guidance as to how
the issue might indeed be fixed;

Produce less than 10% effective false
positives. Developers should feel the
check is pointing out an actual issue at
least 90% of the time;c and

Have the potential for significant im-
pact on code quality. The issues may
not affect correctness, but developers
should take them seriously and delib-
erately choose to fix them.

Some issues are severe enough to
be flagged in the compiler, but pro-
ducing them or developing an auto-
mated fix is not feasible. For example,
fixing an issue may require significant
restructuring of the code. Enabling
these checks as compiler errors would
require manual cleanup of existing in-
stances that is infeasible on the scale of
Google’s vast codebase. Analysis tools
show these checks in code review pre-
vent new occurrences of the issue, al-
lowing the developer to decide how to

c Although this number was initially chosen by
the first author somewhat arbitrarily, it seems
to be a sweet spot for developer satisfaction
and matches the cutoff for similar systems in
other companies.

make an appropriate fix. Code review is
also a good context for reporting rela-
tively less-important issues like stylis-
tic problems or opportunities to sim-
plify code. In our experience, reporting
them at compile-time is frustrating for
developers and makes it more difficult
to iterate and debug quickly; for ex-
ample, an unreachable code detector
might hinder attempts to temporarily
disable a block of code for debugging.
However, at code-review time, develop-
ers are preparing their code to be seen;
they are already in a critical mindset
and more receptive to seeing readabil-
ity and stylistic details.

Tricorder. Tricorder is designed to
be easily extensible and support many
different kinds of program-analysis
tools, including static and dynamic
analyses. We showed a suite of Error
Prone checks in Tricorder that cannot
be enabled as compiler errors. Error
Prone also inspired a new set of analy-
ses for C++ that are integrated with Tri-
corder and called ClangTidy.12 Tricord-
er analyzers report results for more
than 30 languages, support simple
syntactic analyses like style checkers,
leverage compiler information for Java,
JavaScript, and C++, and are straight-
forward to integrate with production
data (such as about jobs that are cur-
rently running). Tricorder continues
to be successful at Google because it
is a plug-in model supporting an eco-
system of analysis writers, actionable
issues are highlighted during the code-
review process, and it provides feed-
back channels to improve analyzers
and ensure analyzer developers act on
the feedback.

Empower users to contribute. As of
January 2018, Tricorder included 146
analyzers, with 125 contributed from
outside the Tricorder team and seven
plug-in systems for hundreds of addi-
tional checks (such as ErrorProne and
ClangTidy, which comprise two of the
seven analyzers plug-in systems).

Provide fixes and involve reviewers.
Tricorder checks can provide sug-
gested fixes that can be directly ap-
plied from the code-review tool. They
are seen by both the reviewer and the
author, and the reviewer can ask the
author to fix the problematic code sim-
ply by clicking a “Please fix” button on
the analysis result. Reviewers typically
withhold approval of a change until

pact. As of January 2018, 733 checks
had been contributed by 162 authors.

Reporting issues sooner is better.
Google’s centralized build system logs
all builds and build results, so we iden-
tified all users who had seen one of the
error messages in a given time window.
We sent a survey to developers who
recently encountered a compiler er-
ror and developers who had received a
patch with a fix for the same problem.
Google developers perceive that issues
flagged at compile time (as opposed
to patches for checked-in code) catch
more important bugs; for example,
survey participants deemed 74% of
the issues flagged at compile time as
“real problems,” compared to 21% of
those found in checked-in code. In
addition, survey participants deemed
6% of the issues found at compiletime
(vs. 0% in checked-in code) “critical.”
This result is explained by the “survi-
vor effect”;3 that is, by the time code is
submitted, the errors are likely to have
been caught by more expensive means
(such as testing and code review).
Moving as many checks into the com-
piler as possible is one proven way to
avoid those costs.

Criteria for compiler checks. To scale-
up our work, we have defined criteria for
enabling checks in the compiler, setting
the bar high, since breaking the com-
pile would be a significant disruption. A
compiler check at Google should be eas-
ily understood; actionable and easy to fix
(whenever possible, the error should in-
clude a suggested fix that can be applied
mechanically); produce no effective false
positives (the analysis should never stop
the build for correct code); and report
issues affecting only correctness rather
than style or best practices.

The primary goal of an analyzer
satisfying these criteria is not simply
to detect faults but to automatically
fix all instances of a prospective com-
piler error throughout the codebase.
However, such criteria limit the scope
of the checks the Error Prone team
enables when compiling code; many
issues that cannot always be detected
correctly or mechanically fixed are still
serious problems.

Warn During Code Review
Once the Error Prone team had built
the infrastructure needed to detect is-
sues at compile time, and had proved

APRIL 2018 | VOL. 61 | NO. 4 | COMMUNICATIONS OF THE ACM 63

contributed articles

Analysis results that are shown at com-
pilation time must reach a much high-
er bar for quality and accuracy that is
not possible to meet for some analyses
that can still identify serious faults. Af-
ter the review and code are checked in,
the friction confronting developers for
making changes increases. Developers
are thus hesitant to make additional
changes to code that has already been
tested and released, and lower severity
and less-important issues are unlikely
to be addressed. Other analysis proj-
ects among major software-develop-
ment organizations (such as Facebook
Infer analysis for Android/iOS apps7)
have also highlighted code review as a
key point for reporting analysis results.

Expand Analyzer Reach
As Google developer-users have
gained trust in the results from Tri-
corder analyzers, they continue to
request further analyses. Tricorder
addresses this in two ways: allow-
ing project-level customization and
adding analysis results at additional
points in the developer workflow. In
this section, we also touch on the rea-
sons Google does not yet leverage more
sophisticated analysis techniques as
part of its core developer workflow.

Project-level customization. Not all
requested analyzers are equally valu-
able throughout the Google codebase;
for example, some analyzers are asso-
ciated with higher false-positive rates
and so would have correspondingly
high effective false-positive rates or
require specific project configuration
to be useful. These analyzers all have
value but only for the right team.

To satisfy these requests, we aimed
to make Tricorder customizable. Our
previous experience with customiza-
tion for FindBugs did not end well; us-
er-specific customization caused dis-
crepancies within and across teams
and resulted in declining use of tools.
Because each user could see a differ-
ent view of issues, there was no way to
ensure a particular issue was seen by
everyone working on a project. If de-
velopers removed all unused imports
from their team’s code, the fix would
quickly backslide if even a single oth-
er developer was not consistent about
removing unused imports.

To avoid such problems, Tricorder
allows configuration only at the proj-

all their comments, manual and auto-
mated, have been addressed.

Iterate on feedback from users. In
addition to the “Please fix” button,
Tricorder also provides a “Not useful”
button that reviewers or proposers can
click to express that they do not like the
analysis finding. Clicking automati-
cally files a bug in the issue tracker,
routing it to the team that owns the an-
alyzer. The Tricorder team tracks such
not-useful clicks, computing the ratio
of “Please fix” vs. “Not useful” clicks.
If the ratio for an analyzer goes above
10%, the Tricorder team disables the
analyzer until the author(s) improve
it. While the Tricorder team has rarely
had to permanently disable an ana-
lyzer, it has disabled an analyzer (on
several occasions) while the analyzer
author is removing and revising sub-
checks that were particularly noisy.

The bugs being filed often lead to
improvement in the analyzers that in
turn greatly improves developers’ satis-
faction with those analyzers; for exam-
ple, the Error Prone team developed, in
2014, an Error Prone check that flagged
when too many arguments were being
passed to a printf-like function in
Guava.19 The printf-like function did
not actually accept all printf specifi-
ers, accepting only %s. About once per
week the Error Prone team would re-
ceive a “Not useful” bug claiming the
analysis was incorrect because the
number of format specifiers in the
bug filers’ code matched the number
of arguments passed. In every case,
the analysis was correct, and the user
was trying to pass specifiers other
than %s. The team thus changed the
diagnostic text to state directly that
the function accepts only the %s
placeholder and stopped getting bugs
filed about that check.

Scale of Tricorder. As of January 2018,
Tricorder had analyzed approximately
50,000 code review changes per day.
During peak hours, there were three
analysis runs per second. Reviewers
clicked “Please Fix” more than 5,000
times per day, and authors applied the
automated fixes approximately 3,000
times per day. And Tricorder analyzers
received “Not useful” clicks 250 times
per day.

The success of code-review analy-
sis suggests it occupies a “sweet spot”
in the developer workflow at Google.

Even in a mature
codebase with
full test coverage
and a rigorous
code-review
process,
bugs slip by.

64 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

contributed articles

Command line support. The Tricord-
er team added command-line support
for developers who are, in effect, code
janitors, regularly going through and
scrubbing their team’s codebase of var-
ious analysis warnings. These develop-
ers are also very familiar with the types
of fixes each analysis will generate and
have high trust in specific analyzers.
Developers can thus use a command-
line tool to automatically apply all fixes
from a given analysis and generate
cleanup changes;

Gating commits. Some teams want
specific analyzers to actually block
commits, rather than just appear in the
code-review tool. The ability to block
commits is commonly requested by
teams that have highly specific custom
checks with no false positives, usually
for a custom DSL or library; and

Results in code browsing. Code brows-
ing works best for showing the scale of
a problem across a large project (or an
entire codebase). For example, analysis
results when browsing code about a dep-
recated API can show how much work a
migration entails; or some security and
privacy analyses are global in scope and
require specialized teams to vet the re-
sults before determining whether there
is indeed a problem. Since analysis re-
sults are not displayed by default, the
code browser allows specific teams to en-
able an analysis layer and then scan the
entire codebase and vet the results with-
out disrupting other developers with
distractions from these analyzers. If an
analysis result has an associated fix, then
developers can apply the fix with a single
click from the code-browsing tool. The
code browser is also ideal for displaying
results from analyses that utilize produc-
tion data, as this data is not available un-
til code is committed and running.

Sophisticated analyses. All of the
static analyses deployed widely at
Google are relatively simple, although
some teams work on project-specific
analysis frameworks for limited do-
mains (such as Android apps) that do
interprocedural analysis. Interproce-
dural analysis at Google scale is techni-
cally feasible. However, implementing
such an analysis is very challenging.
All of Google’s code resides in a single
monolithic source code repository, as
discussed, so, conceptually, any code
in the repository can be part of any
binary. It is thus possible to imagine

ect level, ensuring that anyone making
a change to a particular project sees a
consistent view of the analysis results
relevant to that project. Maintaining
a consistent view has enabled several
types of analyzers to do the following:

Produce dichotomous results. For
example, Tricorder includes an ana-
lyzer for protocol buffer definitions33
that identifies changes that are not
backward compatible. It is used by de-
veloper teams that ensure persistent
information from protocol buffers in
their serialized form but is annoying
for teams that do not store data in this
form. Another example is an analyzer
that suggests using Guava37 or Java 7 idi-
oms that do not make sense for proj-
ects that cannot use these libraries
or language features;

Need a particular setup or in-code an-
notations. For example, teams can only
use the Checker Framework’s nullness
analysis9 if their code is annotated ap-
propriately. Another analysis, when
configured, will check the increase in
binary size and method count for a par-
ticular Android binary and warn devel-
opers if there is a significant increase
or if they are approaching a hard limit;

Support custom domain-specific lan-
guages (DSLs) and team-specific cod-
ing guidelines. Some Google software
development teams have developed
small DSLs with associated validators
they wish to run. Other teams have
developed their own best practices for
readability and maintainability and
would like to enforce those checks; and

Are highly resource-intensive. An ex-
ample is hybrid analyses that incorpo-
rate results from dynamic analysis. Such
analyses provide high value for some
teams but are too costly or slow for all.

As of January 2018, there were ap-
proximately 70 optional analyses
available within Google, and 2,500
projects had enabled at least one of
them. Dozens of teams across the
company are actively developing a
new analyzer, most outside the devel-
oper-tools group.

Additional workflow integration
points. As developers have gained trust
in the tools, they have also requested
further integration into their work-
flow. Tricorder now provides analysis
results through a command-line tool,
a continuous integration system, and a
code-browsing tool.

Engineers working
on static analysis
must demonstrate
impact through
hard data.

APRIL 2018 | VOL. 61 | NO. 4 | COMMUNICATIONS OF THE ACM 65

contributed articles

a tool wastes developer time with false
positives and low-priority issues, devel-
opers will lose faith and ignore results.

Do not just find bugs, fix them. To
sell a static analysis tool, a typical ap-
proach is to enumerate a significant
number of issues that are present in
a codebase. The intent is to influence
decision makers by indicating a po-
tential ability to correct the underly-
ing bugs or prevent them in the future.
However, that potential will remain
unrealized if developers are not incen-
tivized to act. This is a fundamental
flaw: analysis tools measure their util-
ity by the number of issues they iden-
tify, while integration attempts fail
due to the low number of bugs actu-
ally fixed or prevented. Instead, Google
static analysis teams take responsibil-
ity for fixing, as well as finding, bugs,
and measure success accordingly.
Focusing on fixing bugs has ensured
that tools provide actionable advice30
and minimize false positives. In many
cases, fixing bugs is as easy as finding
them through automated tooling. Even
for difficult-to-fix issues, research over
the past five years has highlighted new
techniques for automatically creating
fixes for static analysis issues.22,28,31

Crowdsource analysis development.
Although typical static analysis tools
require expert developers to write the
analyses, experts may be scarce and
not actually know what checks will
have the greatest impact. Moreover,
analysis experts are typically not do-
main experts (such as those working
with APIs, languages, and security).
With FindBugs integration, only a
small number of Googlers under-
stood how to write new checks, so
the small BugBot team had to do all
the work themselves. This limited
the velocity of adding new checks
and prevented others from contribut-
ing their domain knowledge. Teams
like Tricorder now focus on lower-
ing the bar to developer-contributed
checks, without requiring prior static
analysis experience. For example, the
Google tool Refaster37 allows devel-
opers to write checks by specifying
example before and after code snip-
pets. Since contributors are frequent-
ly motivated to contribute after de-
bugging faulty code themselves, new
checks are biased toward those that
save developer time.

a scenario in which analysis results
for a particular code review would re-
quire analyzing the entire repository.
Although Facebook’s Infer7,25 focuses
on compositional analysis in order to
scale separation-logic-based analysis
to multimillion-line repositories, scal-
ing such analysis to Google’s multibil-
lion-line repository would still take sig-
nificant engineering effort.

As of January 2018, implementing
a system to do more sophisticated
analyses has not been a priority for
Google since:

Large investment. The up-front in-
frastructure investment would be pro-
hibitive;

Work needed to reduce false-positive
rates. Analysis teams would have to
develop techniques to dramatically
reduce false-positive rates for many
research analyzers and/or severely re-
strict which errors are displayed, as
with Infer;

Still more to implement. Analysis
teams still have plenty more “simple” ana-
lyzers to implement and integrate; and

High upfront cost. We have found the
utility of such “simple” analyzers to be
high, a core motivation of FindBugs.24
In contrast, even determining the cost-
benefit ratio for more complicated
checks has a high up-front cost.

Note this cost-benefit analysis may
be very different for developers outside
of Google working in specialized fields
(such as aerospace13 and medical de-
vices21) or on specific projects (such as
device drivers4 and phone apps7).

Lessons
Our experience attempting to integrate
static analysis into Google’s workflow
taught us valuable lessons:

Finding bugs is easy. When a code-
base is large enough, it will contain
practically any imaginable code pat-
tern. Even in a mature codebase with
full test coverage and a rigorous code-
review process, bugs slip by. Some-
times the problem is not obvious from
local inspection, and sometimes bugs
are introduced by seemingly harmless
refactorings. For example, consider the
following code snippet hashing a field
f of type long

result =
 31 * result
 + (int) (f ^ (f >>> 32));

Now consider what happens if the
developer changes the type of f to int.
The code continues to compile, but the
right shift by 32 becomes a no-op, the
field is XORed with itself, and the hash
for the field becomes a constant 0. The
result is f no longer affects the value
produced by the hashCode method.
The right shift by more than 31 is stati-
cally detectable by any tool able to com-
pute the type of f, yet we fixed 31 occur-
rences of this bug in Google’s codebase
while enabling the check as a compiler
error in Error Prone.

Since finding bugs is easy,24 Google
uses simple tooling to detect bug pat-
terns. Analysis writers then tune the
checks based on results from running
over Google code.

Most developers will not go out of their
way to use static analysis tools. Following
in the footsteps of many commercial
tools, Google’s initial implementation of
FindBugs relied on engineers choosing
to visit a central dashboard to see the is-
sues found in their projects, though few
of them actually made such a visit. Find-
ing bugs in checked-in code (that may al-
ready be deployed and running without
user-visible problems) is too late. To en-
sure that most or all engineers see static-
analysis warnings, analysis tools must
be integrated into the workflow and en-
abled by default for everyone. Instead of
providing bug dashboards, projects like
Error Prone extend the compiler with
additional checks, and surface analysis
results in code review.

Developer happiness is key. In our
experience and in the literature, many
attempts to integrate static analysis
into a software-development organi-
zation fail. At Google, there is typically
no mandate from management that
engineers use static analysis tools.
Engineers working on static analysis
must demonstrate impact through
hard data. For a static analysis project
to succeed, developers must feel they
benefit from and enjoy using it.

To build a successful analysis plat-
form, we have built tools that deliver
high value for developers. The Tri-
corder team keeps careful accounting
of issues fixed, performs surveys to un-
derstand developer sentiment, makes
it easy to file bugs against the analy-
sis tools, and uses all this data to jus-
tify continued investment. Developers
need to build trust in analysis tools. If

66 COMMUNICATIONS OF THE ACM | APRIL 2018 | VOL. 61 | NO. 4

contributed articles

or poor reporting give them a justifica-
tion for inaction. Analysis teams are
quite careful to enable a check as an
error or warning only after vetting it
against the criteria described here, so
developers are rarely inundated, con-
fused, or annoyed by analysis results.
Surveys and feedback channels are an
important quality control for this proc-
ess. Now that developers have gained
trust in analysis results, the Tricorder
team is fulfilling requests for more
analyses surfaced in more locations in
the Google developer workflow.

We have built a successful static
analysis infrastructure at Google that
prevents hundreds of bugs per day
from entering the Google codebase,
both at compiletime and during code
reviews. We hope others can benefit
from our experience to successfully
integrate static analyses into their
own workflows.

References
1. Aftandilian, E., Sauciuc, R., Priya, S., and Krishnan,

S. Building useful program analysis tools using
an extensible compiler. In Proceedings of the
International Working Conference on Source Code
Analysis and Manipulation (Riva del Garda, Italy, Sept.
23–24). IEEE Computer Society Press, 2012, 14–23.

2. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix,
J., and Pugh, W. Using static analysis to find bugs.
IEEE Software 25, 5 (Sept.-Oct. 2008), 22–29.

3. Ayewah, N. and Pugh, W. The Google FindBugs fixit.
In Proceedings of the International Symposium on
Software Testing and Analysis (Trento, Italy, July
12–16). ACM Press, New York, 2010.

4. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg,
J., McGarvey, C., Ondrusek, B., Rajamani, S.K., and
Ustuner, A. Thorough static analysis of device drivers
ACM SIGOPS Operating Systems Review 40, 4 (Oct.
2006), 73–85.

5. Bazel; http://www.bazel.io
6. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,

Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., and
Engler, D. A few billion lines of code later. Commun.
ACM 53, 2 (Feb. 2010), 66–75.

7. Calcagno, C., Distefano, D., Dubreil, J., Gabi,
D., Hooimeijer, P., Luca, M., O’Hearn, P.W.,
Papakonstantinou, I., Purbrick, J., and Rodriguez, D.
Moving fast with software verification. In Proceedings
of the NASA Formal Method Symposium (Pasadena,
CA, Apr. 27–29). Springer, 2015.

8. Chambers, C., Raniwala, A., Perry, F., Adams,
S., Henry, R., Bradshaw, R., and Weizenbaum, N.
FlumeJava: Easy, efficient data-parallel pipelines.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(Toronto, Canada, June 5–10). ACM Press, New York,
2010.

9. The Checker Framework; https://checkerframework.
org

10. Checkstyle Java Linter; http://checkstyle.sourceforge.
net/

11. Clang Thread Safety Analysis; http://clang.llvm.org/
docs/ThreadSafetyAnalysis.html

12. ClangTidy; http://clang.llvm.org/extra/clang-tidy.html
13. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,

A., Monniaux, D., and Rival, X. The ASTRÉE analyzer.
In Proceedings of the European Symposium on
Programming (Edinburgh, Scotland, Apr. 2–10).
Springer, Berlin, Heidelberg, 2005.

14. Dynamic Sanitizer Tools; https://github.com/google/
sanitizers

15. Error Prone; http://errorprone.info
16. FindBugs; http://findbugs.sourceforge.net/
17. Go vet; https://golang.org/cmd/vet
18. Golint; https://github.com/golang/lint

19. Grammatech; https://resources.grammatech.com/
medical

20. Griesmayer, A., Bloem, R., Cook, B. Repair of Boolean
programs with an application to C. In Proceedings of
the 18th International Conference on Computer Aided
Verification (Seattle, WA, Aug. 17–20). Springer, Berlin,
New York, 2006.

21. Guava: Google Core Libraries for Java 1.6+; https://
code.google.com/p/guava-libraries/

22. Gupta, P., Ivey, M., and Penix, J. Testing at the speed
and scale of Google. Google Engineering Tools Blog,
2011; http://google-engtools.blogspot.com/2011/06/
testing-at-speed-and-scale-of-google.html

23. Hacker News. Twitter outage report, 2016; https://
news.ycombinator.com/item?id=8810157

24. Hovemeyer, D. and Pugh, W. Finding bugs is easy. ACM
SIGPLAN Notices 39, 12 (Dec. 2004), 92–106.

25. Infer; http://fbinfer.com/
26. Johnson, B., Song, Y., Murphy-Hill, E.R., and Bowdidge,

R.W. Why don’t software developers use static
analysis tools to find bugs? In Proceedings of the 35th
International Conference on Software Engineering
(San Francisco, CA, May 18–26). ACM Press, New
York, 2013.

27. Klein, D.V., Betser, D.M., and Monroe, M.G. Making ‘push on
green’ a reality: Issues and actions involved in maintaining a
production service. ;login: 39, 5 (2014), 26–32.

28. Kneuss, E., Koukoutos, M., and Kuncak, V. Deductive
program repair. In Proceedings of the 27th International
Conference on Computer Aided Verification (San
Francisco, CA, July 18–24). Springer, 2015.

29. Larus, J.R., Ball, T., Das, M., DeLine, R., Fahndrich,
M., Pincus, J., Rajamani, S.K., and Venkatapathy, R.
Righting software. IEEE Software 21, 3 (May 2004),
92–100.

30. Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., and
Whitehead, Jr., E. J. Does bug prediction support
human developers’ findings?: From a Google case
study. In Proceedings of the 35th International
Conference on Software Engineering (San Francisco,
CA, May 18–26). ACM Press, New York, 2013.

31. Logozzo, F. and Ball, T. Modular and verified automatic
program repair. ACM SIGPLAN Notices 46, 10 (Oct.
19, 2012), 133–146.

32. Potvin, R. and Levenburg, J. Why Google stores
billions of lines of code in a single repository.
Commun. ACM 59, 7 (July 2016), 78–87.

33. Protocol buffers; http://code.google.com/p/protobuf/
34. Pylint Python Linter; http://www.pylint.org/
35. Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E.,

and Winter, C. Tricorder: Building a program analysis
ecosystem. In Proceedings of the 37th International
Conference on Software Engineering (Firenze, Italy,
May 16–24). ACM Press, New York, 2015.

36. Synopsys Editorial Team. Coverity Report on the ‘Goto
Fail’ Bug. Blog post, Synopsys, Mountain View, CA,
Feb. 25, 2014; http://security.coverity.com/blog/2014/
Feb/a-quick-post-on-apple-security-55471-aka-goto-
fail.html

37. Wasserman, L. Scalable, example-based refactorings
with Refaster. In Proceedings of the Workshop on
Refactoring Tools (Indianapolis, IN, Oct. 26). ACM
Press, New York, 2013.

38. Wright, H., Jasper, D., Klimek, M., Carruth, C., and Wan,
Z. Large-scale automated refactoring using ClangMR.
In Proceedings of the 29th IEEE International
Conference on Software Maintenance (Eindhoven, the
Netherlands, Sept. 22–28). IEEE Computer Society
Press, 2013.

Caitlin Sadowski (supertri@google.com) is a software
engineer at Google Inc., Mountain View, CA, USA.

Edward Aftandilian (eaftan@google.com) leads the
Java compiler and static analysis team at Google, Inc.,
Mountain View, CA, USA.

Alex Eagle (alexeagle@google.com) is a software
engineer at Google Inc., Mountain View, CA, USA.

Liam Miller-Cushon (cushon@google.com) is a software
engineer at Google Inc., Mountain View, CA, USA.

Ciera Jaspan (ciera@google.com) is a software engineer
at Google Inc., Mountain View, CA, USA.

Copyright held by the authors.
Publication rights licensed to ACM. $15.00

Conclusion
Our most important insight is that
careful developer workflow integration
is key for static analysis tool adoption.
While tool authors may believe devel-
opers should be delighted by a list of
probable defects in code they have writ-
ten, in practice we did not find such a
list motivates developers to fix the de-
fects. As analysis-tool developers, we
must measure our success in terms of
defects corrected, not the number pre-
sented to developers. This means our
responsibility extends far beyond the
analysis tool itself.

We advocate for a system focused on
pushing workflow integration as early
as possible. When possible, checks are
enabled as compiler errors. To avoid
breaking builds, tool writers take on
the task of first fixing all the existing
issues in the codebase, allowing us to
“ratchet” the quality of Google’s code-
base one small step at a time, without
regressions. Since we present the er-
rors in the compiler, developers en-
counter them immediately after writ-
ing code, while they are still amenable
to making changes. To enable this,
we have developed infrastructure for
running analyses and producing fixes
over the whole vast Google codebase.
We also benefit from code review and
submission automation that allows a
change to hundreds of files, as well as
an engineering culture in which chang-
es to legacy code are typically approved
because improving the code wins over
risk aversion.

Code review is a sweet spot for dis-
playing analysis warnings before code
is committed. In order to ensure devel-
opers are receptive to analysis results,
Tricorder presents issues only when a
developer is changing the code in ques-
tion, before the change is committed,
and the Tricorder team applies a set of
criteria to selecting what warnings to
display. Tricorder further gathers user
data in the code-review tool that is used
to detect any analyses that produce un-
acceptable numbers of negative reac-
tions. The Tricorder team minimizes
effective false positives by disabling
misbehaving analyses.

To overcome warning blindness,
we have worked to regain the trust of
Google engineers, finding Google de-
velopers have a strong bias to ignore
static analysis, and any false positives

