
I4: Incremental Inference of Inductive Invariants for
Verification of Distributed Protocols

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin

Manos Kapritsos, Baris Kasikci, Karem A. Sakallah

University of Michigan

{mahaojun,amangoel,jeannin,manosk,barisk,karem}@umich.edu

Abstract
Designing and implementing distributed systems correctly

is a very challenging task. Recently, formal verification has

been successfully used to prove the correctness of distributed

systems. At the heart of formal verification lies a computer-

checked proof with an inductive invariant. Finding this in-

ductive invariant, however, is the most difficult part of the

proof. Alas, current proof techniques require inductive in-

variants to be found manually—and painstakingly—by the

developer.

In this paper, we present a new approach, Incremental In-
ference of Inductive Invariants (I4), to automatically generate

inductive invariants for distributed protocols. The essence of

our idea is simple: the inductive invariant of a finite instance
of the protocol can be used to infer a general inductive in-

variant for the infinite distributed protocol. In I4, we create

a finite instance of the protocol; use a model checking tool

to automatically derive the inductive invariant for this finite

instance; and generalize this invariant to an inductive invari-

ant for the infinite protocol. Our experiments show that I4

can prove the correctness of several distributed protocols

like Chord, 2PC and Transaction Chains with little to no

human effort.

1 Introduction
For more than 50 years, the systems community and industry

have been relying on testing to increase their confidence in

the correctness of software [5, 7, 25, 37, 49]. As the avail-

ability demands start to increase, however, testing can fall

short, since it is impractical to exhaustively test a program.

Consequently, testing is bound to occasionally miss a bug,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

https://doi.org/10.1145/3341301.3359651

which may manifest during production, resulting in loss of

availability, revenue, and company reputation [14, 53, 54, 57].

This has led many researchers and companies to look for

alternative ways to develop software with strong correctness

guarantees.

Thankfully, the increasing need for availability has been

paralleled by an increase in the capabilities of formal verifica-

tion techniques. Over the last decade, a number of techniques

and tools have been built to formally verify the correctness

of complex systems software [9, 10, 30, 31, 38, 44, 45].

Unfortunately, existing approaches to formally verify-

ing complex systems have a major scalability bottleneck.

These techniques use interactive and automated theorem

provers [15, 42, 46, 47, 52] to dispatch a number of proof

obligations, thereby simplifying the proof. At the heart of

every proof, however, lies a critical process that existing

approaches do not automate: finding an inductive invariant.
An invariant of a state transition system is a predicate on

the states that holds for all states that are reachable from

the initial state(s); it is any set of states that includes all
reachable states. An invariant is inductive if it is closed under

the transition relation, i.e., the next state of every state in this

set is also a member of this set. Proving a safety property P—
i.e., showing that P always holds for any execution started

from the initial state(s)—amounts to showing either a) that

P is an inductive invariant, or b) that P is an invariant that

can be strengthened to become inductive.

Inductive invariants are tightly linked to the correctness of

distributed systems. Proving the correctness of such a system

is typically split into two parts: proving the correctness of

the distributed protocol by finding an inductive invariant;

and showing that the implementation follows the protocol,

which typically does not require inductive reasoning [30].

While there are simple centralized programs for which

inductive invariants are not required, we have found that all

but the most trivial distributed protocols require an inductive

invariant in order to prove a reasonable safety property. In

non-trivial verification cases, the required safety property P
is an invariant but not an inductive one, and completing the

verification proof entails the derivation of additional invari-

ants that are used to constrain P until it becomes inductive.

These additional invariants are viewed as strengthening as-
sertions that remove those parts of P that are not closed

370

https://doi.org/10.1145/3341301.3359651
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

under the system’s transition relation. In most cases, find-

ing these assertions is the hardest part of the proof. Most

crucially, even for simple systems, these assertions can be

very complicated, and as system complexity increases, these

assertions—and the resulting inductive invariants—grow pro-

portionally more complex.

As a result, finding an inductive invariant for a distributed

protocol is usually the hardest part of the proof. During the

IronFleet project [30], the authors spent about one week

trying to identify the inductive invariant for a very simple

distributed protocol, where a number of nodes pass around

a token in a ring. After careful thought and long discussions,

they identified an invariant that included 5 separate clauses

which, when combined, were sufficient to support an induc-

tive proof [2]. It is perhaps not surprising then, that when

they attempted to find the inductive invariant of a real-world

system—i.e., the Paxos protocol [39]—the required effort was

on the order of months.

Proving the correctness of protocols has a lot of practical

value. Major companies are using formal verification to prove

their designs and protocols correct, even when their imple-

mentations are unverified. For example, Amazon uses TLA+

to verify the correctness of its system designs. Similarly, Mi-

crosoft uses the IronFleet methodology to verify some of its

protocols without going down to the implementation level.

Even when the implementation must be verified, IronFleet

showed that protocol-level verification is an integral part of

the process.

This paper introduces an automated way of finding induc-

tive invariants for distributed protocols, one that does not

rely on human intuition. The core insight that drives this

new approach is that the basic elements of these invariants

are independent of the size of the system, and that they can

therefore be inferred from small, finite instances. For ex-

ample, the inductive invariant of the token ring mentioned

above states that only the last node in a sequence of token

owners can hold the token. This must be true regardless of

the number of nodes on the ring. Similarly, the inductive

invariant of Paxos states that any two quorums of acceptors

must overlap in at least one node; this must hold for any

number of participating acceptors.

We leverage this insight to automate the process of identi-

fying inductive invariants for distributed systems. We pro-

pose a new proof technique and tool called Incremental In-
ference of Inductive Invariants (I4). The key idea behind I4 is

to first identify the inductive invariant of a small instance of

the system and then to use that instance-specific invariant to
infer a generalized invariant that holds for all instances.

The key requirement for I4 is automatically identifying the

inductive invariant for a small instance of the system. To that

end, I4 uses decades of progress made by the model checking

community. Model checking is typically considered inade-

quate [4, 30, 56] for proving the correctness of real-world

distributed systems, as the state space it must explore grows

exponentially. While this state space explosion certainly hap-

pens in generic distributed systems, model checking is power-

ful enough to prove the correctness of small, finite instances.

In particular, the IC3 model checker [6] has shown that it

is possible, given a finite and moderately complex system

instance, to either compute an inductive invariant which

implies the desired safety property; or to produce a coun-

terexample if the system is not correct. I4 harvests this power

as a means to an end: not to prove the correctness of those

small instances, but to infer an inductive invariant that holds

for all instances.

Overall, we make the following contributions:

• We propose a new approach to the verification of dis-

tributed protocols. Instead of manually and painstak-

ingly identifying an inductive invariant, we can draw

inspiration from the inductive invariants of small, fi-

nite instances of these protocols.

• We propose I4, an algorithm that implements this new

approach by combining the power of model checking

and automated theorem provers. I4 creates a finite

instance of a distributed protocol and leverages model

checking to find an inductive invariant specific to that

instance. I4 then uses this invariant as a starting point

to identify a generalized inductive invariant that holds
for all instances of the protocol.

• We evaluate the effectiveness of I4 and find that it can

prove the correctness of a number of interesting dis-

tributed protocols—e.g., Two-Phase Commit, Chord,

Transaction Chains—with little to no manual effort,

and without us providing any insight into the sub-

tleties of these protocols (in fact, we didn’t fully un-

derstand how some of these protocols work).

The rest of the paper is structured as follows. Section 2

shows a concrete example of how the inductive invariants

of small, finite instances can help us discover a generalized

inductive invariant that holds for all instances. Section 3

gives an overview of the I4 approach, while the next two

sections present the details of the two main components of

the approach: generating an inductive invariant for a finite

instance (Section 4) and generalizing that invariant to one

that holds for all instances (Section 5). Section 6 presents

our experiences applying I4 to real distributed protocols and

Section 7 discusses the limitations of our approach and some

open research problems. Section 8 discusses related work

and Section 9 concludes the paper.

2 A New Perspective
Verification of distributed systems has so far relied heavily on

human intellect: to prove the correctness of a distributed sys-

tem, one must first understand it well. One can then attempt

to write a formal proof of correctness, by demonstrating the

existence of an inductive invariant. Inductive invariants are

371

Algorithm 1 Lock Server

after init {

semaphore(Y) := true;

link(X, Y) := false;

}

action connect(c: client, s: server) = {

require semaphore(s);

link(c, s) := true;

semaphore(s) := false;

}

action disconnect(c: client, s: server) = {

require link(c, s);

link(c, s) := false;

semaphore(s) := true;

}

typically much more complex than the desired safety prop-

erty and finding them requires an intimate understanding of

the internal mechanics of the protocol.

In an attempt to facilitate this process, Padon et al. recently

developed Ivy [47]. Ivy takes as input a protocol description

and a safety property, and guides the user, through a series of

interactive steps and visual counterexamples-to-induction,

to discover an inductive invariant. Ivy still fundamentally

relies on human intellect for identifying such an inductive

invariant; but once that invariant is found, Ivy automatically

checks that it is indeed inductive.

In this paper, we propose a new approach for finding such

inductive invariants that does not rely on a deep understand-

ing of the system. The key insight of our approach is that the

behavior of most distributed protocols does not fundamen-

tally change as their size increases. This initial insight led us

to ask the question: is it possible to infer the inductive invari-
ant of a distributed protocol by observing a small instance of
the protocol?
Our experience so far indicates that the answer to this

question is typically “yes”. Distributed protocols exhibit a

high degree of regularity: what is true for a small instance of

four nodes is also true for a large instance of 1000 nodes. We

will demonstrate this regularity using a simple lock server

protocol [47, 56] with N servers andM clients.

Case study: lock server
Algorithm 1 shows the lock server protocol description, writ-

ten in Ivy. In this protocol, every server S maintains a lock

and the server’s state is a boolean semaphore(S) indicating
whether it currently holds its lock. Every client-server pair is

associated with a boolean link(C, S) which denotes whether

clientC holds the lock of server S . Initially every server holds
its own lock and all client-server links are set to false.

There are two possible actions in this protocol. A client

may send a lock request to a server and acquire that server’s

lock if the server currently holds its lock. A client may also

release a lock, handing it back to the server. The safety prop-

erty of this protocol is simple: “no two clients can have a link

to (i.e., hold the lock of) the same server at the same time”:

∀C1,C2, S . link(C1, S) ∧ link(C2, S) =⇒ (C1 = C2)

Let us now consider the inductive invariants of small in-

stances of this protocol. Section 4 describes how we can

automatically generate these instances and their inductive

invariants. For now, we are only interested in what these

inductive invariants are.

The smallest non-trivial instance consists of one server

and two clients. The inductive invariant to prove the correct-

ness of that instance is:

¬(semaphore(S0) ∧ link(C0, S0)) ∧

¬(semaphore(S0) ∧ link(C1, S0)) ∧

¬(link(C0, S0) ∧ link(C1, S0)) (Safety Property)

If we consider a larger instance with more clients—say

four—the inductive invariant becomes bigger, but remains

essentially the same:

¬(semaphore(S0) ∧ link(C0, S0)) ∧
¬(semaphore(S0) ∧ link(C1, S0)) ∧
¬(semaphore(S0) ∧ link(C2, S0)) ∧
¬(semaphore(S0) ∧ link(C3, S0)) ∧
Safety Property

When we further consider instances with multiple servers,

the invariant again increases in size but not in complexity.
For example, the inductive invariant for an instance with

two servers and four clients is:

¬(semaphore(S0) ∧ link(C0, S0)) ∧
¬(semaphore(S0) ∧ link(C1, S0)) ∧
¬(semaphore(S0) ∧ link(C2, S0)) ∧
¬(semaphore(S0) ∧ link(C3, S0)) ∧
¬(semaphore(S1) ∧ link(C0, S1)) ∧
¬(semaphore(S1) ∧ link(C1, S1)) ∧
¬(semaphore(S1) ∧ link(C2, S1)) ∧
¬(semaphore(S1) ∧ link(C3, S1)) ∧
Safety Property

Given the above instances, it does not take much ingenuity

to manually come up with an inductive invariant that works

for all instances of this protocol:
∀C, S .¬(semaphore(S) ∧ link(C, S)) ∧
Safety Property

Of course, this protocol is rather simple and its inductive

invariant is quite small. But the principle still applies to more

complicated protocols: we can use the inductive invariant

of a small instance to infer a generalized inductive invariant
that works for all instances of the protocol.

3 Overview of I4
The ultimate goal of I4 is simple: given a protocol descrip-

tion and a safety property, it tries to prove the correctness

of the protocol by identifying an inductive invariant that

implies the safety property. As we mentioned in Section 2,

the hardest part of any correctness proof is finding such an

372

Protocol.ivy

Counterexample Protocol.finv

Correct

✅

ɠ�&UHDWH�D�
ƉQLWH�LQVWDQFH

ɡ�$YHUURHV�
�$95�

ɢ�'HEXJ ɤ�*HQHUDOL]H

ɥ�,Y\

ɧ�,QFUHDVH�VL]H

ɦ�3UXQH�
LQYDULDQW

,QLWLDO�VL]H

Protocol_inv.ivy

Invariant generation on a finite instance
(Section 4)

Invariant generalization
(Section 5)

Protocol.vmt

Assertion
violations

Safety property violation

ɣ�&RQFUHWL]H

Out of Memory

Figure 1. Flow of I4. White boxes are fully automated, while gray boxes denote manual effort.

invariant. Once we have a candidate invariant for a finite

instance, we generalize it and use the Ivy tool [47] to check

whether it is inductive for an arbitrarily-sized instance.

Figure 1 shows an overview of the I4 flow. Given a protocol

description—written in Ivy—and an initial size, I4 first gener-

ates a finite instance of that protocol with a given initial size.

For example, given the lock server protocol of the previous

section and an initial size of (1, 2), I4 will generate a finite
instance of the protocol with one server and two clients. It

then uses the Averroes model checker [27] to either gener-

ate an inductive invariant that proves the correctness of the

protocol for that particular instance, or produce a counterex-

ample demonstrating how the protocol can be violated and

which can be used to debug the protocol [18, 24].

If the protocol is too complex, the model checker may fail

to produce an answer within a reasonable amount of time or

it may run out of memory. If this occurs, the finite encoding

is simplified—using a concretization technique—to further

constrain it and make it easier for the model checker to run

to completion. This step is currently done manually but is

easily automatable. Section 4 describes the above steps in

more detail (steps 1 , 2 , 3 and 4 of Figure 1).

Once an inductive invariant has been identified, I4 gener-
alizes it to apply not only to the finite instance that produced
it, but also to all instances of the protocol. This process (steps
5 , 6 and 7) is described in detail in Section 5.

4 Invariant generation on a finite instance
The core idea of I4 is to leverage advances in model-checking

techniques to generate an inductive invariant on a small

finite instance of the protocol, then generalize this invariant

to the full protocol. This section details the instantiation of

the protocol to a finite instance to allow for automated model

checking. Given a distributed protocol description in Ivy, I4

automatically creates a finite instance of the protocol in the

VMT format [1], an extension of the SMT-LIB format [3] to

represent state-transition systems. I4 then calls the Averroes

model-checking tool [27] to generate an inductive invariant

of this finite instance.

4.1 Leveraging the power of model checking
Model checking algorithms have had significant success on

verification problems with bounded domains. Unbounded

domains, however, continue to pose a serious challenge: an

unbounded number of objects creates an unbounded number

of interactions that are harder to reason about. As a result,

automated reasoning on unbounded domain protocols gener-

ally employs quantifiers and performs complex, expensive—

and often undecidable—quantifier-based reasoning. On the

other hand, model checking for finite-state transition sys-

tems can be done quantifier-free, is much more mature, and

has been successfully applied to many real-world finite sys-

tems [6, 13, 17, 26, 27, 41]. I4 leverages the strength and ma-

turity of model checking on a finite instance of the problem,

before generalizing the invariant to the general protocol.

One of the key simplifications offered by reasoning on

a finite instance is the ability to reason on quantifier-free
formulas. For example, the assertion ∀E (zero ≤ E) can be

translated in the finite domain where E ∈ {e0, e1, e2, e3} as

(zero ≤ e0) ∧ (zero ≤ e1) ∧ (zero ≤ e2) ∧ (zero ≤ e3).

This translation is always possible, even for complicated

assertions involving two or more alternating quantifiers. For

example, in the unbounded domain of nodes N , the assertion

∀X ∈N ∃Y ∈N s(X ,Y), can be simply expanded and translated

to a finite 3-node domain {n0,n1,n2} as:

(s(n0,n0) ∨ s(n0,n1) ∨ s(n0,n2)) ∧

(s(n1,n0) ∨ s(n1,n1) ∨ s(n1,n2)) ∧

(s(n2,n0) ∨ s(n2,n1) ∨ s(n2,n2))

In general, in a finite domain any formula in first-order logic

can be expanded into a quantifier-free formula, typically at

373

the price of a growth in the size of the formula. In general,

this does not scale but proves very useful for applying model

checking on small, finite instances.

A typical definition of a distributed protocol involves dif-

ferent elements ranging over domains. Domains are typi-

cally unbounded. Examples of domains include the domain of

nodes, clients, servers, epochs, rounds, transactions, etc. For

example, the lock server protocol we described in Section 2

includes two unbounded domains: Dserver representing the

servers, and Dclient representing the clients. Some domains

such as epochs, rounds or transactions may have a natural

ordering. This ordering can be modelled in Ivy by adding

axioms to the original protocol.

Creating a finite instance of a protocol consists of making

each domain size bounded by an explicit value. The explicit

bound enables the simplification of the expressions of the

protocol, that can now be expressedwithout quantifiers. This,

in turn, allows the finite protocol to be efficiently verified

using model checking algorithms.

4.2 Picking a size for the finite instance
A crucial aspect of creating a finite instance is picking the

right size for each domain of the finite instance. The instance

must be large enough to exhibit some pattern that can then

be generalized to the full protocol, but also small enough

so that the finite instance of the problem is tractable for

automatic model checking. Our current prototype relies on

the user to provide an initial size of the finite instance. I4

will create an instance of that size; but we may later realize

(see Section 5.2 for details) that this instance was too small.

In that case, we pick one of the variables in the instance,

increase its size by one, and repeat the process (step 8 in

Figure 1). This approach is akin to an iterative deepening

search algorithm, starting with a small size or depth and

growing it as needed.

The initial size of the problem is an educated guess based

on a response to the question: at least howmany nodes, clients,
servers or epochs are needed to exercise interesting actions and
properties of the protocol? For example, if clients are sharing

a lock, at least two clients are needed to show possible vio-

lations (lock server protocol); if epochs are totally ordered,

at least three epochs are needed for transitivity of the order

to be interesting; if a special zero epoch is further needed,

at least four epochs are needed to exercise meaningful in-

teractions of zero and the order transitivity (distributed lock

protocol). In the lock server protocol, for example, we set the

initial size to one server and two clients, i.e., |Dserver | = 1

and |Dclient | = 2.

4.3 Translation from unbounded to finite domain
Once a size has been picked for each domain, I4 translates

the Ivy implementation to the desired finite VMT instance

(step 1). The first step is to define an explicit set of the

right size for each domain. In the translation of the lock

server presented in Figure 2, we define Dserver = {S0} and
Dclient = {C0, C1}. Relations are then expanded to a number

of boolean variables representing each possible instantiation.

In this example, the relation link : Dclient ×Dserver → Bool
is expanded into two boolean variables link_C0_S0 and

link_C1_S0. Function definitions are similarly expanded: a

function f : Dclient → Dclient would be translated to two

variables f_C0, f_C1 ∈ {C0, C1}, respectively representing

f (C0) and f (C1). Note that we only handle relations and

functions with finite (or finitized) domains and codomains.

From there on the translation is purely syntactic and straight-

forward (Figure 2). For instance, the property expression

∀C1,C2,S link(C1, S) ∧ link(C2, S) =⇒ (C1 = C2)

is translated into a conjunction of 4 instances with C1 ∈

{C0, C1}, C2 ∈ {C0, C1} and S ∈ {S0}. For example, one in-

stance where (C1,C2, S) = (C0, C1, S0) becomes link_C0_S0
∧ link_C1_S0 =⇒ (C0 = C1).

4.4 Overcoming the limitations of model checking
In some cases, the finite instance may still be intractable for

the model checker. In such cases, we manually concretize
the values of certain variables to make the problem easier to

solve, and to compute a more concise finite inductive invari-

ant. For example, a finite, totally ordered domain of epochs

Depoch = {E0, E1, E2, E3} can be concretized by explicitly

imposing the domain axiom (E0 ≤ E1 ≤ E2 ≤ E3). This
reduces the search space and allows the model checker to

only consider states where epochs are following this specific

order. Other examples of useful concretizations include fix-

ing special elements as constants in the VMT instantiation,

for example fixing the smallest epoch zero to E0, explicitly
specifying which node initially holds a lock, etc.

Note that concretizing the finite instance results in limit-

ing the scope of the finite inductive invariant we produce,

i.e., the finite inductive invariant is only valid for the given

concretized finite instance. But this does not hinder the in-

variant generalization presented in Section 5, as long as the

concretizing information is included in the invariant gener-

alization procedure.

There are, however, a few subtleties to pay attention to

when solving finite instances instead of the original prob-

lem. First, the finite instance cannot capture interactions

involving elements in a higher domain space. For example,

with |Dclient | = 2, the finite instance cannot capture interac-

tions that involve at least 3 distinct clients. I4 handles this

by increasing the size of the finite instance when it fails to

generalize the invariant. Second, the finite instance may in-

troduce special clauses that are not present in the original,

unbounded protocol. For example, for the domain of epochs

with (E0 ≤ E1 ≤ E2 ≤ E3), epoch E3 is inherently special in

the finite space since there does not exist any epoch larger

than E3. The finite inductive invariant may thus include spe-

cial clauses involving E3, which may no longer be useful for

374

Figure 2. Translation of lock server in Ivy to a finite instance (1 server / 2 clients) in VMT. Note that our VMT representation

uses different vector sizes (1 for boolean, 2 for clients, 3 for servers) as an easy way to ensure that the model-checker does not

try to compare values of different types.

the unbounded case. We call such clauses instance-specific
clauses. Section 5 discusses how these are pruned during

invariant generalization. Note, finally, that concretization is

not a panacea. It is a manual and error-prone process and

should therefore be used only when necessary to overcome

the limitations of model-checking.

4.5 Invariant generation on the finite instance
After creating a finite VMT instance, I4 passes it on to the

Averroes v2.0 tool [27] (AVR) to perform model checking.

If AVR finds that the finite instance does not uphold the

safety property, it produces a counterexample, which can

then be used to debug the protocol [18, 24]. If the safety

property holds, AVR generates an inductive invariant for

the finite instance; minimizes the invariant by removing

redundant clauses; and then passes it on to the next step to

be generalized.

375

5 Invariant generalization
Once AVR finds an inductive invariant for the finite instance,

I4 will use that inductive invariant as a starting point to

identify a generalized inductive invariant that works for all
instances of the protocol. While performing this general-

ization, however, we must guard against the following two

dangers:

• Too-small finite instance If the finite instance we

have chosen is too small, its inductive invariant may

not contain enough information to be generalizable

to all instances. Consider, for example, what would

happen if we started with an instance of the lock server

protocol that had only one server and one client. Since

the safety property of the protocol is trivially true in

this case, the safety property is actually an inductive

invariant for this particular instance. This means that

the inductive invariant from this particular instance

does not give us any information about the generalized

inductive invariant that holds for all instances. In this

case, the algorithm should eventually realize that this

finite instance is not helpful and move on to a larger

instance, eventually finding an instance that is large

enough to be generalizable.

• Instance-specific clauses As we discussed in Sec-

tion 4.4, even after we have identified an instance that

is large enough to contain all the information required

to put together a generalized inductive invariant, it

is possible that the inductive invariant of the finite

instance includes additional clauses that only hold for

that specific instance and are thus not easily general-

izable. Our generalization algorithm should therefore

identify and prune such clauses.

The rest of this section describes the steps that I4 takes to

identify this generalized inductive invariant (steps 5 , 6 and

7 in Figure 1).

5.1 Initial generalization
The first step is to generalize the finite invariant to instances

of arbitrary size in step 5 by universally quantifying the

strengthening assertions (clauses) produced by AVR. Con-

sider, for example, the clause P(N1), where P denotes an

arbitrary predicate and N1 is one of the nodes in the finite in-

stance of the protocol. In step 5 , I4 generalizes this clause to

apply for all nodes; i.e., ∀N1. P(N1) (line 21 of Algorithm 2).

This is the simplest form of clause generalization, where the

clause applies universally to all nodes.

There are two cases, however, where clauses do not apply

universally and require a slightly more complex generaliza-

tion. The first case (lines 3-9 in Algorithm 2) is when a clause

involves different variables of the same type. In this case,

we weaken the universally quantified clause to only apply

to distinct elements of that type. For example, a clause such

Algorithm 2 Generalization

1: function Generalization(clause, relations)
2: weakeninдs ← relations .conjunction()
3: for var1 ∈ clause do
4: for var2 ∈ clause do
5: if var1 , var2 & var1.type = var2.type then
6: weakeninдs .add(var1 , var2)
7: end if
8: end for
9: end for
10: for const ∈ concrete_consts do
11: for var ∈ clause do
12: if var .type = const .type then
13: if var .value = const .value then
14: weakeninдs .add(var = const)
15: else
16: weakeninдs .add(var , const)
17: end if
18: end if
19: end for
20: end for
21: return ∀var ∈ clause . weakeninдs =⇒ clause
22: end function

as P(N1) ∧Q(N2) is generalized to ∀N1,N2. (N1 , N2) =⇒

P(N1) ∧Q(N2).

The second case (lines 2 and 10-20 in Algorithm 2) is

a result of the (optional) concretization procedure we de-

scribed in Section 4.4. During this procedure, we reduce the

search space of the model checking problem by assigning

concrete values to some of the state variables of the pro-

tocol. In our distributed lock protocol, for example, one of

the nodes—called first—is special in that it is the one ini-

tially holding the lock. During concretization, we can assign

N0 = f irst , to limit the model checking problem to only

consider the case where N0 is that node. Any such concrete

assignments—in the form of generic relations or simple con-

stant assignments—must be taken into account when per-

forming generalization. For example, if we used N0 = f irst
as our concretization, we would generalize clause P(N0) to
∀N0. (N0 = f irst) =⇒ P(N0). Similarly, we would gener-

alize clause P(N0) ∧ Q(N1) as ∀N0,N1. (N0 , N1) ∧ (N0 =

f irst) ∧ (N1 , f irst) =⇒ P(N0) ∧ Q(N1). In addition to

such constant assignments, our concretization process may

include additional information about this finite instance, in

the form of generic relations defined in the original Ivy pro-

tocol. For example, our concretization can produce the clause

btw(N0, N1, N2), denoting that node N1 is between nodes N0
and N2 in a ring topology. The conjunction of all such con-

cretizations is given as input to our generalization algorithm

and is applied as a weakening to all invariant clauses (lines

1,2,21 of Algorithm 2).

376

5.2 Invariant pruning
After all clauses are generalized, they are added to the origi-

nal protocol and are passed on to Ivy (step 6), which checks

if they are sufficient to prove the correctness of the protocol.

Ivy will check if the conjunction of all clauses is inductive.

In particular, it tries to answer the following question (sepa-

rately for each clauseA, including the safety property). Given
an arbitrary state s where the invariant holds, is there a valid
transition to a state s ′ where A does not hold? There are

three possible outcomes:

1. The generalized clauses are inductive and Ivy success-

fully proves the correctness of the protocol.

2. Ivy fails to prove the safety property on s ′. This hap-
pens if the finite instance that led to the generalized

clauses was too small to capture all behaviors of the

distributed protocol. In this case, we need to create

an instance with a larger size (e.g., more nodes) and

repeat the process (step 8).

3. Ivy fails to prove one ormore of the generalized clauses

on s ′. There are two possible reasons for this failure.

First, it is possible that the finite instance we are con-

sidering is “large enough”—i.e., its inductive invari-

ant covers all interesting behaviors of the unbounded

protocol—but it additionally includes some instance-

specific clauses. These clauses do not generalize to all

instances and thus their universally quantified form is

too strong and will fail Ivy’s check. I4 removes these

clauses from the inductive invariant (step 7) and re-

tries the Ivy verification.

The second reason why some assertion may not be in-

ductive is that the entire invariant (i.e., the conjunction

of the safety property and all strengthening clauses)

is not inductive. This can happen when the finite in-

stance is too small. Note that we do not have a way to

distinguish this case from the case above—where the

invariant was too strong, rather than too weak. We

will therefore start pruning clauses one by one, until

the invariant is too weak to support the safety prop-

erty (case (2) above), which will lead I4 to abandon the

attempt on this finite instance and repeat the process

with a larger one.

6 Evaluation
We evaluate the ability of I4 to infer inductive invariants by

testing it on seven distributed protocols: a lock server (Sec-
tion 6.1), a leader election algorithm (Section 6.2), a distributed
lock protocol (Section 6.3), a Chord ring [51] (Section 6.4),

a learning switch (Section 6.5), a database chain consistency
protocol (Section 6.6), and a two-phase commit protocol [28]
(Section 6.7). For the first six protocols, we verified the cor-

rectness of existing Ivy implementations using the safety

properties specified in [47]; we cover all examples originally

presented in [47], albeit with a much higher degree of au-

tomation. We implemented two-phase commit and specified

its safety property based on its original description [28]. Fi-

nally, Section 6.8 evaluates our I4 prototype in terms of how

long it takes to verify each protocol.

We also tried the I4 approach on Paxos, but we have not

found an inductive invariant. This is because the Averroes

model-checker runs out of memory even on small, finite

instances of the Paxos protocol. This is not too surprising,

since Averroes was originally designed for hardware model-

checking and not for distributed systems. We therefore do

not think that this is a fundamental roadblock and are cur-

rently exploring ways to leverage the inherent regularity of

distributed systems to facilitate the model-checker’s job.

We used the first three protocols (lock server, leader elec-

tion and distributed lock) to develop and refine the I4 ap-

proach. We were then able to apply the I4 approach with no

modification on the last four protocols (Chord ring, learning

switch, database chain consistency and two-phase commit),

and prove their safety property fully automatically—except

for the simplemanually-added concretization in Chord, which

required a cursory inspection of about one minute—without
even fully understanding each protocol.

Table 1 presents some relevant parameters for each pro-

tocol and for its finite instantiation, such as the number of

domains and variables it uses, the size of the finite instance

and the complexity of the resulting invariant. Note that our

concretization phase—where needed—is relatively low-effort,

requiring at most one assignment in all cases.

6.1 Lock Server
Our first case study is a simple lock server, our running ex-

ample from Section 2. Since the safety property of the lock

server is trivially satisfied with only one client, we instanti-

ate this protocol with one server and two clients. I4 generates

the generalized inductive invariant for this protocol by go-

ing through its generalization (step 4 in Fig. 1), where it

places universal quantifiers before every strengthening as-

sertion. The generalized inductive invariant below passes

Ivy’s verification with no manual effort.

∀S0,C0. ¬(semaphore(S0) ∧ link(C0, S0)) ∧
Saf ety Property

6.2 Leader Election
Our second case study is a leader election protocol on a

ring [8, 47]. Given a ring of an unbounded number of nodes,

each with its own unique ID, the goal of the protocol is to

elect the node with the highest ID to be the leader. A node

can either (a) send its ID to the next node; or (b) forward a

message from the previous node, if the ID in the message

is larger than its own ID. When a node receives its own ID,

the protocol determines that no other ID is larger than the

node’s own ID, and this node becomes the leader.

377

Protocol Domains Var Finite
instance size

Concreti-
zations

SMT
calls

Clauses in
invariant

Clauses in
minimized
invariant

Pruning
iterations

Lock server 2 2

client = 2

server = 1

∅ 40 3 2 0

Leader election

in ring

2 5

node = 3

id = 3

idn(Ni) = IDi 10527 61 19 0

Distributed lock

protocol

2 5

node = 2

epoch = 4

zero = E0 94713 629 241 2

Chord ring

maintenance

1 9 node = 4 orд = N0 286818 1141 94 2

Learning switch 2 6

node = 3

packet = 1

∅ 4986 105 53 2

Database chain

replication

4 13

transaction = 3

operation = 3

key = 1 node = 2

∅ 6552 154 31 2

Two-Phase

Commit

1 7 node = 6 ∅ 9619 88 46 0

Table 1. Various parameters for creating finite instances for our seven distributed protocols. Var is the number of state variables

and SMT calls is the number of SMT [3] calls required to find the inductive invariant of the finite instance.

This protocol uses two domains node and id , respectively
for nodes and IDs, and the ID of node N is idn(N). The
ring structure is modelled using a relation btw(N1,N2,N3)

indicating whether node N2 is between nodes N1 and N3,

and includes axioms to build a ring topology, where each

node can only communicate with its two neighbors [47].

The protocol also instantiates a total order le(ID1, ID2) to

compare any two IDs. A relation pendinд(ID,N) is used to

indicate that there is a message ID to node N pending in

the network. As the network may delay or duplicate any

message, the protocol never discards any sent message.

The safety property of leader election is defined as “there

cannot be two distinct leaders”:

∀N1,N2. leader (N1) ∧ leader (N2) =⇒ (N1 = N2)

Since a meaningful ring modeled with btw involves at

least three nodes, we generate the inductive invariant on a

three-node finite instance, with domain of nodes {N0, N1, N2}
and domain of IDs {ID0, ID1, ID2}. AVR finds an invariant

on this finite instance, but we are not able to generalize

it to the full protocol. We further find that if we increase

the size to four nodes, AVR runs out of memory without

finding an inductive invariant on the final instance. This

is where our concretization technique proves its usefulness:

by manually assigning concrete values to the three-node

protocol—i.e., by adding axioms idn(N0) = ID0, idn(N1) =
ID1 and idn(N2) = ID2—we facilitate AVR to find a finite-

instance invariant (shown in Table 2) that I4 can generalize to

the full protocol (shown in Table 3) and pass Ivy’s verification.

Since we make no assumption on the order of ID0, ID1 and

¬(¬pendinд_ID0_N0 ∧ leader_N0) ∧

¬(¬pendinд_ID1_N1 ∧ leader_N1) ∧

¬(¬pendinд_ID1_N2 ∧ pendinд_ID1_N1) ∧

¬(¬pendinд_ID1_N2 ∧ btw_N0_N1_N2 ∧ pendinд_ID1_N0) ∧
¬(le_ID0_ID1 ∧ pendinд_ID0_N0) ∧

¬(le_ID0_ID1 ∧ btw_N0_N1_N2 ∧ pendinд_ID0_N2) ∧

¬(le_ID0_ID2 ∧ pendinд_ID0_N0) ∧

¬(le_ID0_ID2 ∧ btw_N1_N0_N2 ∧ pendinд_ID0_N1) ∧

¬(le_ID1_ID0 ∧ pendinд_ID1_N1) ∧

¬(le_ID1_ID0 ∧ btw_N1_N0_N2 ∧ pendinд_ID1_N2) ∧

¬(le_ID1_ID2 ∧ pendinд_ID1_N1) ∧

¬(le_ID1_ID2 ∧ btw_N0_N1_N2 ∧ pendinд_ID1_N0) ∧

¬(le_ID2_ID0 ∧ leader_N2) ∧

¬(le_ID2_ID0 ∧ pendinд_ID2_N2) ∧

¬(le_ID2_ID0 ∧ btw_N0_N1_N2 ∧ pendinд_ID2_N1) ∧

¬(le_ID2_ID1 ∧ leader_N2) ∧

¬(le_ID2_ID1 ∧ pendinд_ID2_N2) ∧

¬(le_ID2_ID1 ∧ btw_N1_N0_N2 ∧ pendinд_ID2_N0) ∧

Safety Property

Table 2. Instance of invariant of Leader Election.

ID2, those axioms have no impact on the generality of the

proof.

Note that, as part of concretization, a universally-quantified

conjunction of the concretization axiom

∀N0 , N1 , N2, ID0 , ID1 , ID2.

(idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (idn(N2) = ID2)

is passed on to the generalization algorithm, which adds

it as a weakening to all clauses in the general invariant.

For example, the clause ¬(¬pendinд_ID0_N0 ∧ leader_N0)

378

(highlighed in Table 2) is generalized into (highlighted in

Table 3, slightly edited for readability):

∀N0, ID0. (idn(N0) =ID0) =⇒

¬(¬pendinд(ID0,N0) ∧ leader (N0))

I4 applies a similar strategy to all clauses of the finite-instance

invariant and obtains the inductive invariant shown (sim-

plified for readability) in Table 3. This generalized inductive

invariant passes Ivy’s verification, thus proving the correct-

ness of the protocol.

6.3 Distributed lock
Our third case study is a distributed lock protocol [30, 47].

This protocol models an unbounded number of nodes that

transfer the ownership of a lock among themselves. Nodes

transfer locks by sending and receiving messages in an un-

reliable network that can drop or duplicate messages. The

ownership of a lock is associated with an ever increasing

epoch, to allow detection of stale messages.

If a node N holds the lock at epoch ep(N), N can pass

the lock to any node N ′ in the system at epoch E > ep(N)
by sending it a transfer(E,N ′) message. When a node N ′ at
epoch ep(N ′) receives a transfer(E,N ′) message with epoch

E > ep(N ′), node N ′ accepts the lock at epoch E, and sends

a message locked(E,N ′) to denote that N ′ holds the lock at

epoch E ′, and update ep(N ′) = E. Otherwise, if E ′ ≤ ep(N ′),
N ′ ignores this stale message. As the network may delay or

duplicate any message, the protocol never discards any sent

transfer message.

The safety property of the protocol is “no two distinct

nodes can hold the lock at the same time”:

∀N1,N2,E. locked(E,N1) ∧ locked(E,N2) =⇒ (N1 = N2)

This protocol involves two sources of infinity: the number of

nodes and the number of epochs. Therefore a finite instance

of the protocol bounds not only the number of nodes, but

also the number of epochs. Unlike previous protocols, even

an instance with just two nodes is enough to generate an

unbounded number of messages by passing the lock between

them with ever-increasing epoch numbers. I4 is able to prove

the correctness of the protocol based on a finite instance with

just two nodes and four epochs.

During our experiments, we found that AVR runs out

of memory due to the large search space. To simplify the

problem, we manually concretize the special epoch zero to
E0 (as discussed in Section 4.4), facilitating AVR’s task.

Given the inductive invariant for this finite instance, I4

still needs two iterations of invariant pruning to get rid of

instance-specific clauses, after which it produces an induc-

tive invariant which passes Ivy’s verification.

6.4 Chord Ring
Our next case study is a Chord Ring [51], a popular dis-

tributed hash table approach in peer-to-peer systems. In the

Chord protocol, nodes are organized in a ring, and each node

stores part of the hash table. Additionally, nodes may join or

leave the ring at any time, prompting a re-arranging of the

ring. The safety property of interest is that the ring remains

connected under certain assumptions about failures.

We use the Chord protocol description in Ivy [47], which

models the protocol in Ivy with each node maintaining two

pointers: one to its successor and one to its successor’s suc-

cessor. Those two pointers are implemented as two relations

over the nodes, s1(N1,N2) when N2 is N1’s successor, and

s2(N1,N3) when N3 is N1’s successor’s successor. Even if

some nodes fail, the safety property remains true as long as

every live node still has a pointer to at least one other live

node. The failure of a node is modelled as a normal transition.

A test transition is used to check whether a given node can

access another given node, and sets an error flag to true if

that is not the case. The safety property is simply expressed

as the error flag never being true.

Part of the protocol was first proved by Zave [58], includ-

ing an informal, intuitive proof as well as a formal proof in

Alloy [35]. The protocol was later implemented in Ivy [47],

formally proving (with manual effort) the primary safety

property. We adopted a slightly modified version of the Ivy

implementation, and were able to prove the same safety

property based on a finite instance with 4 nodes, and by

concretizing a special node, orд = N0.

6.5 Learning Switch
Learning switches maintain a table that mapsMAC addresses

to ports where the incoming frames will be forwarded. When

a frame is received, a learning switch will check to see if

the source MAC address is already in the table, and if not, it

will insert a (Source MAC Address, Port Number) entry into

the table. The switch will then check the destination MAC

address of the incoming frame in the table. If there is an

entry mapping the destination MAC address to port number,

the switch will forward the frame to that port. Otherwise,

the switch will send the packet to all its ports except the

port where the frame was received from (otherwise known

as flooding).

We use the existing implementation of the learning switch

protocol in Ivy, by simply updating it to the latest Ivy syntax,

and feeding it to I4. The safety property states that there does

not exist any forwarding cycles, where an incoming frame

would be forwarded to the same port that it arrived from. We

instantiated this protocol with 4 nodes and 2 packets since

forwarding cycles can possibly form in such a small setup.

Given the inductive invariant for the finite instance with

4 nodes and 2 packets, I4 can infer the general inductive

invariant and pass Ivy’s verification with no manual effort.

Later, we found that even 3 nodes with only a single packet is

sufficient for I4 to infer the generalizable inductive invariant

for this protocol.

379

∀N0, ID0. (idn(N0) = ID0) =⇒ ¬(¬(pendinд(ID0,N0)) ∧ leader (N0)) ∧

∀N0,N1,N2, ID1. (idn(N1) = ID1) ∧ (N0 , N1) ∧ (N0 , N2) ∧ (N1 , N2)

=⇒ ¬(¬(pendinд(ID1,N2)) ∧ btw(N0,N1,N2) ∧ pendinд(ID1,N0)) ∧

∀N0,N1, ID0, ID1. (idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (ID0 , ID1) =⇒ ¬(le(ID0, ID1) ∧ pendinд(ID0,N0)) ∧

∀N0,N1,N2, ID0, ID1. (idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (ID0 , ID1) ∧ (N0 , N1) ∧ (N0 , N2) ∧ (N1 , N2)

=⇒ ¬(le(ID0, ID1) ∧ btw(N0,N1,N2) ∧ pendinд(ID0,N2)) ∧

Safety Property

Table 3. Generalized invariant of Leader Election (slightly edited for readability).

6.6 Database Chain Consistency
Database chain consistency is the last protocol we evaluated

from the protocol suite found in the Ivy paper. This protocol

provides traditional database safety guarantees of atomic-

ity, serializability, and isolation for distributed databases. In

this distributed setting, a chain transaction is split into sub-

transactions that operate sequentially on data that is sharded

across multiple nodes. In order for the chain transaction to

commit, each subtransaction should also commit. If any sub-

transaction aborts, then the entire chain transaction is also

aborted.

Using I4, we successfully verified the safety properties

defined by the Ivy authors. We started with an instance of 4

transactions, 5 operations, 2 keys and 2 nodes. That initial

instancewas large enough to be generalizable.We later found

that even a smaller instance with 3 transactions, 3 operations,

1 key and 2 nodes is generalizable.

6.7 Two-Phase Commit
We implemented two-phase commit in Ivy. We proved that

our implementation satisfies the traditional Atomic Commit

safety properties: (a) all processes that reach a decision reach

the same one, (b) the Commit decision can only be reached if

all processes vote Yes, and (c) if there are no failures and all

processes vote Yes, then the decision must be Commit. We

started with an initial size of 4 nodes, and kept increasing

the instance size by one. We finally proved the correctness

of the protocol with 6 nodes.

6.8 Runtime Breakdown of I4’s Verification
Table 4 and Figure 3 show the runtime of various phases

of the I4 algorithm. For clarity, we omit the time it takes to

generate the finite instances, as it was negligible and almost

identical among all protocols (∼0.3 seconds). In most cases,

I4 can prove the correctness of these protocols within a few

tens of seconds, with the worst case being that one has to

wait for 10.5 minutes.

7 Limitations and future directions
This paper takes the first step in a new direction—proving the

correctness of distributed protocols based on the inductive

invariants of small, finite instances. Our experience apply-

ing this approach to real protocols is thus far encouraging:

Protocol F M G total
Lock server 0.02 0.0 0.8 0.8

Leader election in ring 4.0 0.1 2.0 6.1

Distributed lock protocol 30.6 53.3 75.5 159.5

Chord ring maintenance 386.1 218.5 24.3 628.9

Learning switch 2.9 0.8 6.9 10.7

Database chain replication 4.2 2.3 6.2 12.6

Two-Phase Commit 2.6 0.1 1.6 4.3

Table 4. Runtime results (in seconds). F is the time required

to find the finite inductive invariant; M is the time is takes

to minimize the finite inductive invariant; and G is the time

to generalize the clauses and perform invariant pruning.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Lock server Leader election Distributed lock
protocol

Chord ring
maintenance

Learning switch Database chain
consistency

2 Phase Commit

Finding Minimizing Generalization/pruning

Figure 3. Runtime break down for each of the seven proto-

cols we verified using I4.

we have been able to prove the correctness of a number of

interesting protocols, with little to no manual effort. For all

its successes heretofore, we believe that there are several

more steps to be taken in this research direction. We list

below a number of limitations of our current approach and

prototype in the hope that they will serve as inspiration for

future research.

• Choosing an instance sizeWhen instantiating a pro-

tocol, we need to use an instance that is large enough

to exhibit all the interesting properties of an arbitrarily-

sized instance. Currently, we incrementally increase

the size of the instance to guarantee we will eventually

380

consider an instance that is large enough. In our ex-

periments, we manually select an initial size to speed

this process up.

• Existential quantifiersOur generalization algorithm
adds universal quantifiers to generalize finite induc-

tive invariants. We currently do not support inductive

invariants that include existential quantifiers. Our ex-

perience so far suggests that existential quantifiers are

not very common, but supporting themwould increase

the generality of our approach. For example, we were

careful to write the two-phase commit protocol so that

it would not use any existential quantifiers, but doing

so required human intervention, which we try to avoid

as much as possible.

• Verifying implementations I4 focuses on verifying

distributed protocols, rather than implementations.

Automating the proof of a full distributed implemen-

tation is much harder, as it usually requires reasoning

about undecidable fragments of logic, which are noto-

riously hard to verify automatically. Also, our current

prototype does not support some of Ivy’s features, such

as objects, translation to concrete imperative code, ar-

bitrary assumptions, etc.

• Optimizing model checking for distributed sys-
temsWe are currently relying on existing, unmodified

model checkers to find the inductive invariants of fi-

nite instances. While these tools have come a long way

in recent years, they may still not scale even for small

instances of some complex protocols. Our concretiza-

tion technique helps mitigate this problem to a certain

degree, but we believe this is only the first step in a line

of optimizations that will customize model checking

algorithms to deal with the particular requirements of

distributed systems. Specifically, the high-level struc-

ture of a protocol can be used by the model checker

to identify compact strengthening assertions that, in
some sense, respect that structure and exhibit its in-

herent regularity.

8 Related Work
In this section, we discuss existing approaches in distributed

system verification, finding inductive invariants and auto-

mated verification.

8.1 Verification of Distributed Systems
Formal verification is gaining popularity in the systems com-

munity as an alternative to testing. Its significance is partic-

ularly pronounced in distributed systems, which are notori-

ously subtle and complex. Lamport’s TLA+ [40] has mostly

been used to prove the correctness of abstract protocols,

as it is not really designed for actual implementations. The

first practical verified implementations of distributed sys-

tems came with IronFleet [30] and Verdi [56]. IronFleet uses

a combination of refinement and reduction [43] to facili-

tate the verification of distributed systems. Verdi, on the

other hand, uses a series of system transformers. It starts by

proving the correctness of the system under a very strong

model and uses the transformers to prove refinement to in-

creasingly weaker models. Both Verdi and IronFleet rely on

significant manual effort to identify the inductive invariants

of the system—and thus prove its correctness.

A recent work proposed pretend synchrony [55], an ap-

proach that aims to simplify the reasoning behind distributed

protocols. The idea behind pretend synchrony is that one

can transform an asynchronous distributed protocol into an

equivalent synchronous protocol, thus making it easier to

reason about. Ideas like this can be used in conjunction with

I4: by simplifying the problem, we may be able to increase

the scalability of the underlying model checking and thus

automate the proof of more complex protocols.

Pnueli et al. [48] proposed that verifying a parameterized

distributed system consisting of n identical interacting pro-

cesses can be accomplished by verifying a relatively small

finite instantiation. The basic idea is that a system of n > n0
processes can be verified by checking an instance with justn0
processes, where n0 is linear in the number of local state vari-

ables of a single process. This idea is the inspiration behind

I4. I4, however, is fundamentally different from the approach

of Pnueli et al. First, this approach does not actually find any

inductive invariants. They merely show that proving the cor-

rectness of a system with n0 processes is sufficient to prove

its correctness for any n > n0. Moreover, this only works

when each process has finite state (n0 depends linearly on the
state size of each process, so it would be infinite otherwise).

As such, this approach doesn’t apply to today’s distributed

systems, whose state space is unbounded. This is exactly the

innovation of I4: finitizing the problem and generalizing the

result to infinite-state protocols. The approach of Pnueli et al.

relies solely on model checking, precisely because it assumes

that the only source of infinity is the number of nodes in the

system.

8.2 Inductive Invariants
To overcome the challenge of finding an inductive invariant,

previous work has taken a number of approaches for both

finite- and infinite-state programs. A number of works have

focused on identifying loop invariants. Proof planning [33]

uses failed proof attempts to find loop invariants, while Flana-

gan and Qadeer [21] use a technique called predicate abstrac-

tion. Furia andMeyer [22] use heuristics from postconditions

to synthesize loop invariants. Daikon [19] was proposed

in 2000 to learn possible program invariants, followed by

Houdini [20] which learns conjunctive inductive invariants.

IC3 [6] and PDR [17] can automatically find inductive in-

variants for finite state machines, and were later extended

to certain systems with infinite-domain variables [12, 32].

For list-manipulating programs, Property-Directed Shape

381

Analysis [34] and UPDR [36] have shown effective results,

though the approach doesn’t guarantee termination. Greben-

shchikov et al. [29] show that a Horn clause is the most

common pattern in program verification, and the ICE learn-

ing model [16, 23] uses this result to synthesize invariants.

Although some of these techniques can deal with a finite
number of variables with infinite domains (e.g., strings or in-

finite integers), they cannot effectively deal with distributed

systems, whose state typically contains an unbounded num-

ber of variables (e.g., an unbounded set of sent messages,

and unbounded copies of a state variable in different nodes).

Ivy [47] uses a different way to reduce that effort by facili-

tating the hardest part about proving correctness properties

for distributed systems. To achieve that, Ivy restricts the

implementation enough to ensure that it includes no un-

decidable propositions. Verification in Ivy is a manual and
interactive process, where the developer iteratively refines

the invariant using the counterexamples provided by Ivy,

until an inductive invariant is identified.

8.3 Automated Verification
Bedrock [11] is a framework for automatically generating

proofs for first-class code pointers. Bedrock uses mostly-

automated discharge of verification conditions inspired by

separation logic. Using a computational approach coupled

with functional programming, Bedrock avoids quantifiers

almost entirely, and achieves mostly-automated verification.

Yggdrasil [50] and Hyperkernel [45] are two recent ap-

proaches that aim to minimize the human effort required

to perform formal verification. Yggdrasil [50] presents a for-

mally verified file system using the notion of crash refinement.
It automatically verifies that, even in the presence of non-

deterministic events like crashes and reordering, a correct

implementation will still produce the same disk state as its

specification. Yggdrasil uses a finite domain to guarantee de-

cidable SMT queries. Hyperkernel [45] is a formally verified

OS kernel. Similar to Yggdrasil, Hyperkernel also finitizes

kernel interfaces to keep SMT queries decidable. I4 has a

similar goal—push-button verification—but for distributed

systems. The key difference is that distributed systems have

infinite domains, which lead to undecidable SMT queries. To

sidestep this problem, I4 uses a unique combination of finite

protocol instances (via model checking) and decidable SMT

queries in the infinite domain (via Ivy).

9 Conclusion
This paper presents I4, a new approach for verifying the

correctness of distributed protocols, with little to no manual

effort and without relying on human intuition. I4 is based on

a simple intuition: an inductive invariant of a small, finite

instance can be used to infer a generalized inductive invari-

ant that holds for all instances of the protocol. I4 leverages

the power of model checking to automatically find an induc-

tive invariant for a small instance of the protocol and then

generalizes that invariant to instances of arbitrary size. Our

evaluation shows that I4 is successful in automatically prov-

ing the correctness of a number of interesting distributed

protocols, even ones whose subtleties and internal workings

were unknown to us.

Acknowledgments
We would like to thank our shepherd, Deian Stefan, and the

anonymous SOSP reviewers for their detailed reviews and

insightful feedback. This project was funded in part by the

National Science Foundation under award CSR-1814507.

References
[1] Verification Modulo Theories. http://www.vmt-lib.org.
[2] Personal communication with authors, 2019.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theo-

ries Library (SMT-LIB). www.SMT-LIB.org, 2016.
[4] W. J. Bolosky, J. R. Douceur, and J. Howell. The farsite project: A

retrospective. SIGOPS Oper. Syst. Rev., 41(2):17–26, Apr. 2007.
[5] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – a formal system for

testing and debugging programs by symbolic execution. In Intl. Conf.
on Reliable Software, 1975.

[6] A. R. Bradley. Sat-based model checking without unrolling. In In-
ternational Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 70–87. Springer, 2011.

[7] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In

USENIX Conference on Operating Systems Design and Implementation,
2008.

[8] E. Chang and R. Roberts. An improved algorithm for decentralized

extrema-finding in circular configurations of processes. Communica-
tions of the ACM, 22(5):281–283, 1979.

[9] H. Chen, T. Chajed, A. Konradi, S. Wang, A. İleri, A. Chlipala, M. F.

Kaashoek, and N. Zeldovich. Verifying a high-performance crash-

safe file system using a tree specification. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, pages 270–286,

New York, NY, USA, 2017. ACM.

[10] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zel-

dovich. Using crash hoare logic for certifying the fscq file system. In

Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 18–37, New York, NY, USA, 2015. ACM.

[11] A. Chlipala. Mostly-automated verification of low-level programs

in computational separation logic. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’11, pages 234–245, New York, NY, USA, 2011. ACM.

[12] A. Cimatti and A. Griggio. Software model checking via ic3. In

International Conference on Computer Aided Verification, pages 277–
293. Springer, 2012.

[13] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Ic3 modulo theories

via implicit predicate abstraction. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
46–61. Springer, 2014.

[14] CVE-2016-5195. Dirty cow vulnerability. https://dirtycow.ninja/, 2017.

[15] C. development team. The coq proof assistant reference manual.

http://coq.inria.fr/distrib/current/refman/.

[16] D. D’Souza, P. Ezudheen, P. Garg, P. Madhusudan, and D. Neider. Horn-

ice learning for synthesizing invariants and contracts. arXiv preprint
arXiv:1712.09418, 2017.

382

http://www.vmt-lib.org
https://dirtycow.ninja/

[17] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation

of property directed reachability. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, pages 125–
134. FMCAD Inc, 2011.

[18] J. Engblom. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference, pages 1–6. IEEE,
2012.

[19] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly

detecting relevant program invariants. In Proceedings of the 22nd
international conference on Software engineering, pages 449–458. ACM,

2000.

[20] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for

esc/java. In International Symposium of Formal Methods Europe, pages
500–517. Springer, 2001.

[21] C. Flanagan and S. Qadeer. Predicate abstraction for software verifica-

tion. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’02, pages 191–202, New

York, NY, USA, 2002. ACM.

[22] C. A. Furia and B. Meyer. Inferring loop invariants using postcon-

ditions. In Fields of logic and computation, pages 277–300. Springer,
2010.

[23] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust

framework for learning invariants. In International Conference on
Computer Aided Verification, pages 69–87. Springer, 2014.

[24] J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz.

Executable counterexamples in software model checking. In Working
Conference on Verified Software: Theories, Tools, and Experiments, pages
17–37. Springer, 2018.

[25] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[26] A. Goel and K. Sakallah. Empirical evaluation of ic3-based model

checking techniques on verilog rtl designs. In Proceedings of the Con-
ference on Design, Automation and Test in Europe. EDA Consortium,

2019.

[27] A. Goel and K. Sakallah. Model checking of verilog rtl using ic3

with syntax-guided abstraction. In NASA Formal Methods Symposium.

Springer, 2019.

[28] J. N. Gray. Notes on data base operating systems. In Operating Systems,
pages 393–481. Springer, 1978.

[29] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Syn-

thesizing software verifiers from proof rules. ACM SIGPLAN Notices,
47(6):405–416, 2012.

[30] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.

Roberts, S. Setty, and B. Zill. Ironfleet: proving practical distributed

systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1–17. ACM, 2015.

[31] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,

and B. Zill. Ironclad apps: End-to-end security via automated full-

system verification. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI’14, pages 165–181,
Berkeley, CA, USA, 2014. USENIX Association.

[32] K. Hoder and N. Bjørner. Generalized property directed reachability.

In International Conference on Theory and Applications of Satisfiability
Testing, pages 157–171. Springer, 2012.

[33] A. Ireland and J. Stark. On the automatic discovery of loop invariants.

In NASA Conference Publication, pages 137–152. Citeseer, 1997.
[34] S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur. Property-

directed shape analysis. In International Conference on Computer Aided
Verification, pages 35–51. Springer, 2014.

[35] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 11(2):256–
290, 2002.

[36] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham.

Property-directed inference of universal invariants or proving their

absence. Journal of the ACM (JACM), 64(1):7, 2017.
[37] J. C. King. Symbolic execution and program testing. Communications

of the ACM, 1976.

[38] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,

and S. Winwood. sel4: Formal verification of an os kernel. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[39] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[40] L. Lamport. Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley Longman Publishing

Co., Inc., 2002.

[41] S. Lee and K. A. Sakallah. Unbounded Scalable Verification Based on

Approximate Property-Directed Reachability and Datapath Abstrac-

tion. In Computer-Aided Verification (CAV), volume LNCS 8559, pages

849–865, Vienna, Austria, July 2014. Springer.

[42] K. R. M. Leino. Dafny: An automatic program verifier for functional

correctness. In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages
348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[43] R. J. Lipton. Reduction: A method of proving properties of parallel

programs. Commun. ACM, 18(12):717–721, Dec. 1975.

[44] Microsoft Research. Everest project. https://www.microsoft.com/en-

us/research/project/project-everest-verified-secure-

implementations-https-ecosystem/, 2016.

[45] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Tor-

lak, and X. Wang. Hyperkernel: Push-button verification of an os

kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 252–269, New York, NY, USA, 2017. ACM.

[46] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof As-
sistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,

2002.

[47] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham. Ivy:

safety verification by interactive generalization. ACM SIGPLANNotices,
51(6):614–630, 2016.

[48] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification

with invisible invariants. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 82–97.
Springer, 2001.

[49] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine

for C. In 5th joint meeting of the European Software Engineering Con-
ference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’05), pages 263–272, 2005.

[50] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button

verification of file systems via crash refinement. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’16, pages 1–16, Berkeley, CA, USA, 2016. USENIX
Association.

[51] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup

protocol for internet applications. IEEE/ACM Transactions on Network-
ing (TON), 11(1):17–32, 2003.

[52] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Se-

cure distributed programming with value-dependent types. In M. M. T.

Chakravarty, Z. Hu, and O. Danvy, editors, Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming, pages
266–278. ACM, 2011.

[53] A. S. Team. Amazon S3 availability event: July 20, 2008.

http://status.aws.amazon.com/s3-20080720.html, 2008.

[54] The Associated Press. General Electric acknowledges Northeastern

blackout bug. http://www.securityfocus.com/news/8032, 2004.

383

[55] K. von Gleissenthall, R. G. Kici, A. Bakst, D. Stefan, and R. Jhala. Pre-

tend synchrony: synchronous verification of asynchronous distributed

programs. PACMPL, 3(POPL):59:1–59:30, 2019.
[56] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,

and T. Anderson. Verdi: a framework for implementing and formally

verifying distributed systems. ACM SIGPLAN Notices, 50(6):357–368,

2015.

[57] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks.

In The Fourth USENIX Workshop on Hot Topics in Parallelism, 2012.

[58] P. Zave. Reasoning about identifier spaces: How to make chord correct.

IEEE Transactions on Software Engineering, 43(12):1144–1156, 2017.

384

	Abstract
	1 Introduction
	2 A New Perspective
	3 Overview of I4
	4 Invariant generation on a finite instance
	4.1 Leveraging the power of model checking
	4.2 Picking a size for the finite instance
	4.3 Translation from unbounded to finite domain
	4.4 Overcoming the limitations of model checking
	4.5 Invariant generation on the finite instance

	5 Invariant generalization
	5.1 Initial generalization
	5.2 Invariant pruning

	6 Evaluation
	6.1 Lock Server
	6.2 Leader Election
	6.3 Distributed lock
	6.4 Chord Ring
	6.5 Learning Switch
	6.6 Database Chain Consistency
	6.7 Two-Phase Commit
	6.8 Runtime Breakdown of I4's Verification

	7 Limitations and future directions
	8 Related Work
	8.1 Verification of Distributed Systems
	8.2 Inductive Invariants
	8.3 Automated Verification

	9 Conclusion
	References

