
1 

 

How Did Software Get So Reliable Without Proof? 

C.A.R. Hoare 

Oxford University Computing Laboratory, 

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK 

 

FME ‘96 Proceedings of the Third International Symposium of Formal Methods Europe on 

Industrial Benefit and Advances in Formal Methods, March 18—22, 1996, Pages 1-17 

 

Abstract. By surveying current software engineering practice, this paper reveals that the tech-

niques employed to achieve reliability are little different from those which have proved effective 

in all other branches of modern engineering: rigorous management of procedures for design in-

spection and review; quality assurance based on a wide range of targeted tests; continuous evolu-

tion by removal of errors from products already in widespread use; and defensive programming, 

among other forms of deliberate over-engineering. Formal methods and proof play a small direct 

role in large scale programming; but they do provide a conceptual framework and basic under-

standing to promote the best of current practice, and point directions for future improvement. 

1 Introduction 

Twenty years ago it was reasonable to predict that the size and ambition of software products 

would be severely limited by the unreliability of their component programs. Crude estimates sug-

gest that professionally written programs delivered to the customer can contain between one and 

ten independently correctable errors per thousand lines of code; and any software error in principle 

can have spectacular effect (or worse: a subtly misleading effect) on the behaviour of the entire 

system. Dire warnings have been issued of the dangers of safety-critical software controlling health 

equipment, aircraft, weapons systems and industrial processes, including nuclear power stations. 

The arguments were sufficiently persuasive to trigger a significant research effort devoted to the 

problem of program correctness. A proportion of this research was based on the ideal of certainty 

achieved by mathematical proof. 

Fortunately, the problem of program correctness has turned out to be far less serious than pre-

dicted. A recent analysis by Mackenzie has shown that of several thousand deaths so far reliably 

attributed to dependence on computers, only ten or so can be explained by errors in the software: 

most of these were due to a couple of instances of incorrect dosage calculations in the treatment 

of cancer by radiation. Similarly predictions of collapse of software due to size have been falsified 

by continuous operation of real-time software systems now measured in tens of millions of lines 

of code, and subjected to thousands of updates per year. This is the software which controls local 

and trunk telephone exchanges; they have dramatically improved the reliability and performance 

of telecommunications throughout the world. And aircraft, both civil and military, are now flying 

with the aid of software measured in millions of lines—though not all of it is safety-critical. Com-

pilers and operating systems of a similar size now number their satisfied customers in millions. 

So the questions arise: why have twenty years of pessimistic predictions been falsified? Was 

it due to successful application of the results of the research which was motivated by the predic-

tions? How could that be, when clearly little software has ever has been subjected to the rigours 

of formal proof? The objective of these enquiries is not to cast blame for the non-fulfilment of 



2 

 

prophecies of doom. The history of science and engineering is littered with false predictions and 

broken promises; indeed they seem to serve as an essential spur to the advancement of human 

knowledge; and nowadays, they are needed just to maintain a declining flow of funds for research. 

Nixon’s campaign to cure cancer within ten years was a total failure; but it contributed in its time 

to the understanding on which the whole of molecular medicine is now based. The proper role for 

an historical enquiry is to draw lessons that may improve present practices, enhance the accuracy 

of future predictions, and guide policies and directions for continued research in the subject. 

The conclusion of the enquiry will be that in spite of appearances, modern software engineering 

practice owes a great deal to the theoretical concepts and ideals of early research in the subject; 

and that techniques of formalisation and proof have played an essential role in validating and pro-

gressing the research. 

However, technology transfer is extremely slow in software, as it should be in any serious 

branch of engineering. Because of the backlog of research results not yet used, there is an imme-

diate and continuing role for education, both of newcomers to the profession and of experienced 

practitioners. The final recommendation is that we must aim our future theoretical research on 

goals which are as far ahead of the current state of the art as the current state of industrial practice 

lags behind the research we did in the past. Twenty years perhaps? 

2 Management 

The most dramatic advances in the timely delivery of dependable software are directly at-

tributed to a wider recognition of the fact that the process of program development can be pre-

dicted, planned, managed and controlled in the same way as in any other branch of engineering. 

The eventual workings of the program itself are internal to a computer and invisible to the naked 

eye; but that is no longer any excuse for keeping the design process out of the view of management; 

and the visibility should preferably extend to all management levels up to the most senior. That is 

a necessary condition for the allocation of time, effort and resources needed for the solution of 

longer term software problems like those of reliability. 

The most profitable investment of extra effort is known to be at the very start of a project, 

beginning with an intensified study not only of the requirements of the ultimate customer, but also 

of the relationship between the product and the environment of its ultimate use. The greatest num-

ber (by far) of projects that have ended in cancellation or failure in delivery and installation have 

already begun to fail at this stage. Of course we have to live with the constant complaint that the 

customers do not know what they want; and when at last they say they do, they constantly change 

their mind. But that is no excuse for abrogating management responsibility. Indeed, even stronger 

management is required to explore and capture the true requirements, to set up procedures and 

deadlines for management of change, to negotiate and where necessary invoke an early cancella-

tion clause in the contract. Above all, the strictest management is needed to prevent premature 

commitment to start programming as soon as possible. This can only lead to a volume of code of 

unknown and untestable utility, which will act forever after as a dead weight, blighting the subse-

quent progress of the project, if any. 

The transition from an analysis of requirements to the specification of a program to meet them 

is the most crucial stage in the whole project; the discovery at this stage of only a single error or a 

single simplification would fully repay all the effort expended. To ensure the proper direction of 

effort, the management requires that all parts of the specification must be subjected to review by 

the best and most experienced software architects, who thereby take upon themselves an 



3 

 

appropriate degree of responsibility for the success of the project. That is what enables large im-

plementation teams to share the hard-won experience and judgement of the best available engi-

neers. 

Such inspections, walkthroughs, reviews and gates are required to define important transitions 

between all subsequent phases in the project, from project planning, design, code, test planning, 

and evaluation of test results. The individual designer or programmer has to accept the challenge 

not only of making the right decisions, hut also of presenting to a group of colleagues the argu-

ments and reasons for confidence in their correctness. This is amazingly effective in instilling and 

spreading a culture conducive to the highest reliability. Furthermore, if the review committee is 

not satisfied that the project can safely proceed to its next phase, the designer is required to re-

work the design and present it again. Even at the earliest stage, management knows immediately 

of the setback, and already knows, even if they refuse to believe it, that the delivery will have to 

be rescheduled by exactly the same interval that has been lost. Slack for one or two such slippages 

should be built into the schedule; but if the slack is exhausted, alternative and vigorous action 

should be no longer delayed. 

At the present day, most of the discussion at review meetings is conducted in an entirely infor-

mal way, using a language and conceptual framework evolved locally for the purpose. However, 

there is now increasing experience of the benefits of introducing abstract mathematical concepts 

and reasoning methods into the process, right from the beginning. This permits the consequences 

of each proposed feature and their possible combinations to be explored by careful and exhaustive 

mathematical reasoning, to avoid the kind of awkward and perhaps critical interactions that might 

otherwise be detected only on delivery. At the design stage, the mathematics can help in exploring 

the whole of the design space, and so give greater assurance that the simplest possible solution has 

been adopted. Even stricter formalisation is recommended for specifying the interfaces between 

the components of the design, to be implemented perhaps in different places at different times by 

different people. Ideally, one would like to see a proof in advance of the implementation that cor-

rectness of the components, defined in terms of satisfaction of the interface specifications, will 

guarantee correctness of their subsequent assembly. This can greatly reduce the risk of a lengthy 

and unpredictable period of integration testing before delivery. 

At the final review of the code, judicious use of commentary in the form of assertions, precon-

ditions, postconditions and invariants can greatly help in marshalling a convincing argument that 

a program actually works. Furthermore, it is much easier to find bugs in a line of reasoning than it 

is in a line of code. In principle, correctness of each line of reasoning depends at most on two 

preceding lines of reasoning, which are explicitly referenced. In principle, correctness of each line 

of code depends on the behaviour of every other line of code in the system. 

Success in the use of mathematics for specification, design and code reviews does not require 

strict formalisation of all the proofs. Informal reasoning among those who are fluent in the idioms 

of mathematics is extremely efficient, and remarkably reliable. It is not immune from failure; for 

example simple misprints can be surprisingly hard to detect by eye. Fortunately, these are exactly 

the kind of error that can be removed by early tests. More formal calculation can be reserved for 

the most crucial issues, such as interrupts and recovery procedures, where bugs would be most 

dangerous, expensive, and most difficult to diagnose by tests. 

A facility in formalisation and effective reasoning is only one of the talents that can help in a 

successful review. There are many other less formal talents which are essential. They include a 

wide understanding of the application area and the marketplace, an intuitive sympathy with the 

culture and concerns of the customer, a knowledge of the structure and style of existing legacy 



4 

 

code, acquaintance and professional rapport with the most authoritative company experts on each 

relevant topic, a sixth sense for the eventual operational consequences of early design decisions, 

and above all, a deep sense of personal commitment to quality, and the patience to survive long 

periods of intellectual drudgery needed to achieve a thoroughly professional result. These attrib-

utes are essential. The addition of mathematical fluency to the list is not going to be easy; the best 

hope is to show that it will enhance performance in all these other ways as well. 

3 Testing 

Thorough testing is the touchstone of reliability in quality assurance and control of modern 

production engineering. Tests are applied as early as possible at all stations in the production line. 

They are designed rigorously to maximise the likelihood of failure, and so detect a fault as soon 

as possible. For example, if parameters of a production process vary continuously, they are tested 

at the extreme of their intended operating range. Satisfaction of all tests in the factory affords 

considerably increased confidence, on the part of the designer, the manufacturer, and the general 

public, that the product will continue to work without fail throughout its service lifetime. And the 

confidence is justified: modern consumer durables are far more durable than they were only twenty 

years ago. 

But computing scientists and philosophers remain sceptical. E.W. Dijkstra has pointed out that 

program testing can reveal only the presence of bugs, never their absence. Philosophers of science 

have pointed out that no series of experiments, however long and however favourable can ever 

prove a theory correct; but even only a single contrary experiment will certainly falsify it. And it 

is a basic slogan of quality assurance that “you cannot test quality into a product”. How then can 

testing contribute to reliability of programs, theories and products? Is the confidence it gives illu-

sory? 

The resolution of the paradox is well known in the theory of quality control. It is to ensure that 

a test made on a product is not a test of the product itself, but rather of the methods that have been 

used to produce it—the processes, the production lines, the machine tools, their parameter settings 

and operating disciplines. If a test fails, it is not enough to mend the faulty product. It is not enough 

just to throw it away, or even to reject the whole batch of products in which a defective one is 

found. The first principle is that the whole production line must be re-examined, inspected, ad-

justed or even closed until the root cause of the defect has been found and eliminated. 

Scientists are equally severe with themselves. To test a theory they devise a series of the most 

rigorous possible experiments, aimed explicitly and exclusively to disprove it. A single test with a 

negative result may occasionally be attributed to impure ingredients or faulty apparatus; but if the 

negative outcome is repeated, parts of the theory have to be rethought and recalculated; when this 

gets too complicated, the whole theory has to be abandoned. As Popper points out, the non-scientist 

will often die with (or even for) his false beliefs; the scientist allows his beliefs to die instead of 

himself. 

A testing strategy for computer programs must be based on lessons learned from the successful 

treatment of failure in other branches of science and engineering. The first lesson is that the test 

strategy must be laid out in advance and in all possible detail at the very earliest stage in the plan-

ning of a project. The deepest thought must be given to making the tests as severe as possible, so 

that it is extremely unlikely that an error in the design of the program could possibly remain unde-

tected. Then, when the program is implemented and passes all its tests the first time, it is almost 

unbelievable that there could be any inherent defect in the methods by which the program has been 



5 

 

produced or any systematic lapse in their application. This is the message of Harlan Mill’s “clean 

room” strategy. 

The earliest possible design of the test strategy has several other advantages. It encourages 

early exploration, simplification and clarification of the assumptions underlying use of the pro-

gram, especially at edges of its operating range; it facilitates early detection of ambiguities and 

awkward interaction effects latent in the specification; and it concentrates attention from the ear-

liest stage on central problems of assuring correctness of the system as a whole. Many more tests 

should be designed than there will ever be time to conduct; they should be generated as directly as 

possible from the specification, preferably automatically by computer program. Random selection 

at the last minute will protect against the danger that under pressure of time the program will be 

adapted to pass the tests rather than meeting the rest of its specification. There is some evidence 

that early attention to a comprehensive and rigorous test strategy can improve reliability of a de-

livered product, even when at the last minute there was no time to conduct the tests before delivery! 

The real value of tests is not that they detect bugs in the code, but that they detect inadequacy 

in the methods, concentration and skills of those who design and produce the code. Programmers 

who consistently fail to meet their testing schedules are quickly isolated, and assigned to less in-

tellectually demanding tasks. The most reliable code is produced by teams of programmers who 

have survived the rigours of testing and delivery to deadline over a period of ten years or more. 

By experience, intuition, and a sense of personal responsibility they are well qualified to continue 

to meet the highest standards of quality and reliability. But don’t stop the tests: they are still es-

sential to counteract the distracting effects and the perpetual pressure of close deadlines, even on 

the most meticulous programmers. 

Tests that are planned before the code is written are necessarily “black box” tests; they operate 

only at the outermost interfaces of the product as a whole, without any cognizance of its internal 

structure. Black box tests also fulfil an essential role as acceptance tests, for use on delivery of the 

product to the customer’s site. Since software is invisible, there is absolutely no other way of 

checking that the version of the software loaded and initialised on the customer’s machine is in 

fact the same as what has been ordered. Another kind of acceptance test is the suite of certification 

tests which are required for implementations of standard languages like COBOL and ADA. They 

do little to increase confidence in the overall reliability of the compiler, but they do at least fairly 

well ensure that all the claimed language features have in fact been delivered; past experience 

shows that even this level of reliability cannot be taken for granted. 

Another common kind of black box test is regression testing. When maintaining a large system 

over a period of many years, all suggested changes are submitted daily or weekly to a central site. 

They are all incorporated together, and the whole system is recompiled, usually overnight or at the 

week end. But before the system is used for further development, it is subjected to a large suite of 

tests to ensure that it still works; if not, the previous version remains in use, and the programmer 

who caused the error has an uncomfortable time until it is mended. The regression tests include all 

those that have detected previous bugs, particularly when this was done by the customer. Experi-

ence shows that bugs are often a result of obscurity or complication in the code or its documenta-

tion; and any new change to the code is all too likely to reintroduce the same bug—something that 

customers find particularly irksome. 

4 Debugging 

The secret of the success of testing is that it checks the quality of the process and methods by 

which the code has been produced. These must be subjected to continued improvement, until it is 



6 

 

normal to expect that every test will be passed first time, every time. Any residual lapse from this 

ideal must be tracked to its source, and lead to lasting and widely propagated improvements in 

practice. Expensive it may be, but that too is part of the cure. In all branches of commerce and 

industry, history shows dramatic reduction in the error rates when their cost is brought back from 

the customer to the perpetrator. 

But there is an entirely different and very common response to the discovery of an error by 

test: just correct the error and get on with the job. This is known as debugging, by analogy with 

the attempt to get rid of an infestation of mosquitoes by killing the ones that bite you—so much 

quicker and cheaper and more satisfying than draining the swamps in which they breed. For insect 

control, the swatting of individual bugs is known to be wholly ineffective. But for programs it 

seems very successful; on removal of detected bugs, the rate of discovery of new bugs goes down 

quite rapidly, at least to begin with. The resolution of the paradox is quite simple; it is as if mos-

quitoes could be classified into two very distinct populations, a gentle kind that hardly ever bite, 

and a vicious kind that bite immediately. By encouraging the second kind, it is possible to swat 

them, and then live comfortably with the yet more numerous swarm that remains. It seems possible 

that a similar dichotomy in software bugs gives an explanation of the effectiveness of debugging. 

The first tests of newly written code are those conducted by the programmer separately on 

isolated segments. These are extraordinarily effective in removing typographical errors, mis-

keying, and the results of misunderstanding the complexity of the programming language, the run-

time library or the operating system. This is the kind of error that is easily made, even by the most 

competent and diligent programmer, and fortunately just as easily corrected in today’s fast-turn-

round visual program debugging environments. Usually, the error is glaringly obvious on the first 

occasion that a given line of code is executed. 

For this reason, the objective of the initial test suite is to drive the program to execute each line 

of its code at least once. This is known as a coverage test; because it is constructed in complete 

knowledge of the object under test, it is classified as an “open box” test. In hardware design a 

similar principle is observed; the suite of tests must ensure that every stable element makes at least 

one transition from high voltage to low and at least one transition from low voltage to high. Then 

at least any element that is stuck at either voltage level will be detected. 

The cheapest way of testing a new or changed module of code in a large system is simply to 

insert the module in the system and run the standard suite of regression tests. Unfortunately, the 

coverage achieved in this way does not seem adequate: the proportion of code executed in regres-

sion tests has been reported to be less than thirty per cent. To improve this figure, a special test 

harness has to be constructed to inject parameters and inspect results at the module level. Unfor-

tunately, for a module with many parameters, options and modes, to push the coverage towards a 

hundred percent gets increasingly difficult; in the testing of critical software for application in 

space, comprehensive testing is reported to increase costs by four times as much as less rigorously 

tested code. Equally unfortunately, total coverage is found to be necessary: more errors continue 

to be discovered right up to the last line tested. 

In hardware design, exhaustive testing of stuck-at faults has also become impossible, because 

no sufficiently small part of a chip can be exercised in isolation from the rest. Nevertheless, quite 

short test sequences are adequate to identify and discard faulty chips as they come off the produc-

tion line. It is a fortunate property of the technology of VLSI that any faults that are undetected by 

the initial tests will very probably never occur; or at least they will never be noticed. They play the 

role of the gentle kind of mosquito: however numerous, they hardly ever bite. 



7 

 

Returning to the case of software, when the program or the programmer has been exhausted 

by unit testing, the module is subjected to regression testing, which may throw up another crop of 

errors. When these are corrected, the regression tests soon stop detecting new errors. The same 

happens when an updated system is first delivered to the customer: nearly all the errors are thrown 

up in early runs of the customer’s own legacy code. After that, the rate at which customers report 

new errors declines to a much lower and almost constant figure. 

The reason for this is that even the most general-purpose programs are only used in highly 

stereotyped ways, which exercise only a tiny proportion of the total design space of possible paths 

through the code. Most of the actual patterns of use are explored by the very first regression tests 

and legacy tests, and beta testing enables the customer to help too. When the errors are removed 

from the actually exercised paths, the rate at which new paths are opened up is very low. Even 

when an anomaly is detected, it is often easier to avoid it by adapting the code that invokes it; this 

can be less effort and much quicker than reporting the error. Perhaps it is by this kind of mutual 

adaption that the components of a large system, evolving over many years, reach a level of natural 

symbiosis; as in the world of nature, the reliability and stability and robustness of the entire system 

is actually higher than that of any of its parts. 

When this stable state is reached, analysis of a typical error often leads to an estimate that, even 

if the error were uncorrected, the circumstances in which it occurs are so unlikely that on a statis-

tical basis they will not occur again in the next five thousand years. Suppose a hundred new errors 

of this kind are detected each year. Crude extrapolation suggests that there must be about half a 

million such errors in the code. Fortunately, they play the same role as the swarms of the gentle 

kind of mosquito that hardly ever bites. The less fortunate corollary is that if all the errors that are 

detected are immediately corrected, it would take a thousand years to reduce the error rate by 

twenty percent. And that assumes that there are no new errors introduced by the attempt to correct 

one which has already been detected. After a certain stage, it certainly pays both the customer and 

the supplier to leave such errors unreported and uncorrected. 

Unfortunately, before that stage is reached, it often happens that a new version of the system 

is delivered, and the error rate shoots up again. The costs to the customer are accepted as the price 

of progress: the cost to the supplier is covered by the profit on the price of the software. The real 

loss to the supplier is the waste of the time and skill of the most experienced programmers, who 

would otherwise be more profitably employed in implementing further improvements in the func-

tionality of the software. Although (surprisingly) the figures are often not officially recorded, the 

programmers themselves estimate that nearly half their time is spent in error correction. This is 

probably the strongest commercial argument for software producers to increase investment in 

measures to control reliability of delivered code. 

5 Over-engineering 

The concept of a safety factor is pervasive in engineering. After calculating the worst case load 

on a beam, the civil engineer will try to build it ten times stronger, or at least twice as strong, 

whenever the extra cost is affordable. In computing, a continuing fall in price of computer storage 

and increase in computer power has made almost any trade-off acceptable to reduce the risk of 

software error, and the scale of damage that can increasingly result from it. This leads to the same 

kind of over-engineering as is required by law for bridge-building; and it is extremely effective, 

even though there is no clear way of measuring it by a numeric factor. 

The first benefit of a superabundance of resource is to make possible a decision to avoid any 

kind of sophistication or optimisation in the design of algorithms or data structures. Common 



8 

 

prohibitions are: no data packing, no optimal coding, no pointers, no sharing, no dynamic storage 

allocation. The maximum conceivably necessary size of record or array is allocated, and then some 

more. Similar prohibitions are often placed on program structures: no jumps, no interrupts, no 

multiprogramming, no global variables. Access to data in other modules is permitted only through 

carefully regulated remote procedure calls. In the past, these design rules were found to involve 

excessive loss of efficiency; up to a factor of a hundred has been recorded on first trials of a rigor-

ously structured system. 

This factor had to be regained by relaxing the prohibitions, massaging the interfaces between 

modules, even to the extent of violating the structural integrity of the whole system. Apart from 

the obvious immediate dangers, this can lead to even greater risk and expense in subsequent up-

dating and enhancing of the system. Fortunately, cheaper hardware reduces the concern for effi-

ciency, and improved optimisation technology for higher level languages promises further assis-

tance in reconciling a clear structure of the source code with high efficiency in the object code. 

Profligacy of resources can bring benefits in other ways. When considering a possible excep-

tional case, the programmer may be quite confident that it has already been discriminated and dealt 

with elsewhere in some other piece of code; as a result in fact the exception can never arise at this 

point. Nevertheless, for safety, it is better to discriminate again, and write further code to deal with 

it. Most likely, the extra code will be totally unreachable. This may be part of the explanation why 

in normal testing and operation, less than twenty per cent of the code of a large system is ever 

executed; which suggests an overengineering factor of five. The extra cost in memory size may be 

low, but there is a high cost in designing, writing and maintaining so much redundant code. For 

example, there is the totally pointless exercise of designing coverage tests for this otherwise un-

reachable code. 

Another profligate use of resources is by cloning of code. A new feature to be added to a large 

program can often be cheaply implemented by making a number of small changes to some piece 

of code that is already there. But this is felt to be risky: the existing code is perhaps used in ways 

that are not at all obvious by just looking at it, and any of these ways might be disrupted by the 

proposed change. So it seems safer to take an entirely fresh copy of the existing code, and modify 

that instead. Over a period of years there arise a whole family of such near-clones, extending over 

several generations. Each of them is a quick and efficient solution to an immediate problem; but 

over time they create additional problems of maintenance of the large volumes of code. For exam-

ple, if a change is made in one version of the clone, it is quite difficult even to decide whether it 

should be propagated to the other versions, so it usually isn’t. The expense arises when the same 

error or deficiency has to be detected and corrected again in the other versions. 

Another widespread over-engineering practice is known as defensive programming. Each in-

dividual programmer or team erects a defensive barrier against errors and instabilities in the rest 

of the system. This may be nothing more than a private library of subroutines through which all 

calls are made to the untrusted features of a shared operating system. Or it may take the form of 

standard coding practices. For example, it is recommended in a distributed system to protect every 

communication with the environment, or with another program, by a timeout, which will be in-

voked if the external response is not sufficiently prompt. Conversely, every message accepted from 

the environment is subjected to rigorous dynamic checks of plausibility, and the slightest suspicion 

will cause the message to be just ignored, in the expectation that its sender is similarly protected 

by timeout. 

A similar technique can be applied to the global data structures used to control the entire sys-

tem. A number of checking programs, known as software audits, are written to conduct plausibility 



9 

 

checks on all the records in the global system tables. In this case, suspicious entries are rendered 

harmless by a reinitialization to safe values. Such audits have been found to improve mean time 

between crashes of an embedded system from hours to months. The occasional loss of data and 

function is unnoticed in a telephone switching application: it could hardly be recommended for air 

traffic control, where it would certainly cause quite a different kind of crash. 

The ultimate and very necessary defence of a real time system against arbitrary hardware error 

or operator error is the organisation of a rapid procedure for restarting the entire system. The goal 

of a restart is to restore the system to a valid state that was current some time in the recent past. 

These warm starts can be so efficient that they are hardly noticeable except by examining the 

historical system log. So who cares whether the trigger for a restart was a rare software fault or a 

transient hardware fault? Certainly, it would take far too long to record information that would 

permit them to be discriminated. 

The limitation of over-engineering as a safety technique is that the extra weight and volume 

may begin to contribute to the very problem that it was intended to solve. No one knows how much 

of the volume of code of a large system is due to over-engineering, or how much this costs in terms 

of reliability. In general safety engineering, it is not unknown for catastrophes to be caused by the 

very measures that are introduced to avoid them. 

6 Programming Methodology 

Most of the measures described so far for achieving reliability of programs are the same as 

those which have proved to be equally effective in all engineering and industrial enterprises, from 

space travel to highway maintenance, from electronics to the brewing of beer. But the best general 

techniques of management, quality control, and safety engineering would be totally useless by 

themselves; they are only effective when there is a general understanding of the specific field of 

endeavour, and a common conceptual framework and terminology for discussion of the relation-

ship between cause and effect, between action and consequence in that field. Perhaps initially, the 

understanding is based just on experience and intuition; but the goal of engineering research is to 

complement and sometimes replace these informal judgements by more systematic methods of 

calculation and optimisation based on scientific theory. 

Research into programming methodology has a similar goal, to establish a conceptual frame-

work and a theoretical basis to assist in systematic derivation and justification of every design 

decision by a rational and explicable train of reasoning. The primary method of research is to 

evaluate proposed reasoning methods by their formalisation as a collection of proof rules in some 

completely formal system. This permits definitive answers to the vital questions: is the reasoning 

valid? is it adequate to prove everything that is needed? and is it simpler than other equally valid 

and adequate alternatives? It is the provably positive answer to these simple questions that gives 

the essential scientific basis for a sound methodological recommendation—certainly an improve-

ment on mere rhetoric, speculation, fashion, salesmanship, charlatanism or worse. 

Research into programming methodology has already had dramatic effects on the way that 

people write programs today. One of the most spectacular successes occurred so long ago that it is 

now quite non-controversial. It is the almost universal adoption of the practice of structured pro-

gramming, otherwise known as avoidance of jumps (or gotos). Millions of lines of code have now 

been written without them. But it was not always so. At one time, most programmers were proud 

of their skill in the use of jumps and labels. They regarded structured notations as unnatural and 

counter-intuitive, and took it as a challenge to write such complex networks of jumps that no struc-

tured notations could ever express them. 



10 

 

The decisive breakthrough in the adoption of structured programming by IBM was the publi-

cation of a simple result in pure programming theory, the Bohm-Jacopini theorem. This showed 

that an arbitrary program with jumps could be executed by an interpreter written without any jumps 

at all; so in principle any task whatsoever can be carried out by purely structured code. This theo-

rem was needed to convince senior managers of the company that no harm would come from 

adopting structured programming as a company policy; and project managers needed it to protect 

themselves from having to show their programmers how to do it by rewriting every piece of com-

plex spaghetti code that might be submitted. Instead the programmers were just instructed to find 

a way, secure in the knowledge that they always could. And after a while, they always did. 

The advantages of structured programming seem obvious to those who are accustomed to it: 

programs become easy to write, to understand, and to modify. But there is also a good scientific 

explanation for this judgement. It is found by a formalisation of the methods needed to prove the 

correctness of the program with the aid of assertions. For structured programs, a straightforward 

proof always suffices. Jumps require a resort to a rather more complex technique of subsidiary 

deductions. Formalisation has been invaluable in giving objective support for a subjective judge-

ment: and that is a contribution which is independent of any attempt to actually use the assertional 

proof rules in demonstrating the correctness of code. 

Another triumph of theory has been widespread appreciation of the benefits of data types and 

strict type-checking of programs. A type defines the outer limits of the range of values for a pro-

gram variable or parameter. The range of facilities for defining types is sufficiently restricted that 

a compiler can automatically check that no variable strays outside the limits imposed by its de-

clared type. The repertoire of operations on the values of each type are defined by simple axioms 

similar to those which define the relevant branch of mathematics. Strict typechecking is certainly 

popular in universities, because of the help it gives in the teaching of programming to large classes 

of students with mixed abilities; it is even more widely beneficial in modern mass consumer lan-

guages like Visual Basic; and in very large programs which are subject to continuous change, it 

gives a vital assurance of global system integrity that no programmer on the project would wish to 

forego. 

Another triumph of theoretical research has been widespread adoption of the principles of in-

formation hiding. An early example is found in the local variables of Algol 60. These are intro-

duced by declaration and used as workspace for internal purposes of a block of code which con-

stitutes the scope of the declaration; the variable name, its identity, and even its existence is totally 

concealed from outside. The concept of declaration and locality in a program was based on that of 

quantification and bound variables in predicate logic; and so are the proof methods for programs 

which contain them. 

The information hiding introduced by the Algol 60 local variable was generalised to the design 

of larger-scale modules and classes of object-oriented programming, introduced into Algol 60 by 

Simula 67. Again, the scientific basis of the structure was explored by formalisation of the relevant 

proof techniques, involving an explicit invariant which links an abstract concept with its concrete 

representation as data in the store of a computer. 

The value of a foundation in formal logic and mathematics is illustrated by the comparison of 

Algol 60 with the Cobol language, brought into existence and standardised at about the same time 

by the U.S. Department of Defence. Both languages had the highly commendable and explicit 

objective of making programs easier to understand. Cobol tried to do this by constructing a crude 

approximation to normal natural English, whereas Algol 60 tried to get closer to the language of 

mathematics. There is no doubt which was technically more successful: the ideas of Algol 60 have 



11 

 

been adopted by many subsequent languages, including even Fortran 90. Cobol by comparison has 

turned out to be an evolutionary dead end. 

7 Conclusion 

This review of programming methodology reveals how much the best of current practice owes 

to the ideas and understanding gained by research which was completed more than twenty years 

ago. The existence of such a large gap between theory and practice is deplored by many, but I 

think quite wrongly. The gap is actually an extremely good sign of the maturity and good health 

of our discipline, and the only deplorable results are those that arise from failure to recognise it. 

The proper response to the gap is to first congratulate the practitioners for their good sense. 

Except in the narrowest areas, and for the shortest possible periods of time, it would be crazy for 

industry to try to keep pace with the latest results of pure research. If the research fails, the industry 

fails with it; and if the research continues to succeed, the industry which is first to innovate runs 

the risk of being overtaken by competitors who reap the benefits of the later improvements. For 

these reasons, it would be grossly improper to recommend industry on immediate implementation 

of results of their own research that is still in progress. Indeed, Sir Richard Doll points out that 

scientists who give such advice not only damage their clients; they also lose that most precious of 

all attributes of good research, their scientific objectivity. 

The theorists also should be accorded a full share of the congratulations; for it is they who have 

achieved research results that are twenty years ahead of the field of practice. It is not their failing 

but rather their duty to achieve and maintain such an uncomfortable lead, and to spread it over a 

broad front across a wide range of theories. No one can predict, with any certainty or accuracy of 

detail, the timescales of change in technology or in the marketplace. The duty of the researcher is 

not to predict the future more accurately than the businessman, but to prepare the basic under-

standing which may be needed to deal with the unexpected challenges of any possible future de-

velopment. Provided that this goal has been met, no researcher should be blamed for failure of 

early predictions made to justify its original funding of the research. Mistakes made by business-

men and politicians are far more expensive. 

The recognition of the appropriate timescale to measure the gap between the theory and prac-

tice of a discipline is an essential to the appropriate planning of research and education, both to fill 

the gap by improving practice, and to extend it again by advancing the theory. I would recommend 

that the best researchers in the field should simultaneously try to do both, because the influence of 

practice on the development of theory is more beneficial and actually quicker than the other way 

round. 

At the extreme of the practical end, I would recommend the theorist to alternate theoretical 

pursuits with much closer observation and experimentation on actual working programs, with all 

the mass of documentation and historical development logs that have accumulated in the last ten 

years. These systems are now sufficiently stable, and have sufficient commercial prospects, to 

justify quite practical research to answer questions that will guide recommendations for future 

beneficial changes in their structure, content or methods of development. 

For example, it would be very interesting to find a way of estimating the proportional cost of 

cloning and the other over-engineering practices. By sampling, it would be interesting to trace a 

number of errors to their root cause, and see how they might have been avoided, perhaps by better 

specification or by better documentation or by better structuring of code. Is my conjectured dichot-

omy of error populations observed in practice? Any recommendation for improved formalisation 

or improved structure will probably be based on other people’s research ideas that are up to twenty 



12 

 

years old. Even so, they must be backed up by trial recoding of a range of existing modules, se-

lected on the scientific principle of being the most likely to reveal the fallacies in the recommen-

dation, rather than its merits. Strange to relate, it has been known for a business to spend many 

millions on a change that has not been subjected to any prior scientific trials of this kind. 

Formal methods researchers who are really keen on rigorous checking and proof should iden-

tify and concentrate on the most critical areas of a large software system, for example, synchroni-

sation and mutual exclusion protocols, dynamic resource allocation, and reconfiguration strategies 

for recovery from partial system failure. It is known that these are areas where obscure time-de-

pendent errors, deadlocks and livelocks (thrashing) can lurk untestable for many years, and then 

trigger a failure costing many millions. It is possible that proof methods and model checking are 

now sufficiently advanced that a good formal methodologist could occasionally detect such ob-

scure latent errors before they occur in practice. Publication of such an achievement would be a 

major milestone in the acceptance of formal methods in solving the most critical problems of soft-

ware reliability. 

I have suggested that personal involvement in current practices and inspection of legacy code 

may lead to quite rapid benefits, both to the practitioner and to the theorist. But this is not the right 

permanent relationship between them; in a proper policy of technology transfer, it is for the prac-

titioner to recognise promising results of research, and take over all the hard work of adapting 

them for widespread application. In software, unfortunately, the gap between practice and theory 

is now so large that this is not happening. Part of the trouble is that many or most of the practition-

ers did not study formal methods or even computing science at University. This leaves a large 

educational gap, that can only be filled by a programme of in-service education which will acquaint 

some of the best software engineers in industry with some of the important ideas of computing 

science. Since many of them have degrees in mathematics, or at least in some mathematical branch 

of science, they have the necessary background and ability: since they do not have degrees in 

computing, they need to start right at the beginning, for example, with context free languages and 

finite state machines, and simple ideas of types and functional programming. 

Another high barrier to technology transfer is the failure of software engineering toolsets to 

include a modicum of support for formality—for example to allow mathematical notations in word 

processors, to incorporate typechecking for specifications, and hypertext techniques for quick 

cross-referencing between formal and informal documentation. Improved tools should concentrate 

first on very simple old techniques like execution profiles and selective compilation of assertions 

before going on to more advanced but less mature technology, such as model checking or proof 

assistance. The actual construction of industrial quality tools must be done in collaboration with 

the industrial suppliers of these tools. Only they have the knowledge and profit motive to adapt 

them, and to continue adapting them, to the rapidly changing fashions and needs of the market-

place. 

For long-term research, my advice is even more tentative and controversial. It pursues a hope 

to complement the many strengths, and compensate the single weakness, of current theoretical 

research in formal methods. The strengths arise from the depth and the range of the specialisation 

of many flourishing research schools in all the relevant areas. For example, in programming lan-

guage semantics, we have reasoning based on denotational, algebraic and operational presenta-

tions. Among programming paradigms, we have both theoretical studies and applications of func-

tional, procedural, logical and parallel programming languages. Even among the parallel languages 

there is a great variation between those based on synchronous or asynchronous control, shared 



13 

 

store or distributed message passing, untimed or with timing of various kinds; even hardware and 

software have different models. 

Specialisation involves a deep commitment to a narrow selection of presentation, reasoning 

methods, paradigm, language and application area, or even a particular application. The whole 

point of the specialisation in formal methods is to restrict the notational framework as far as nec-

essary to achieve some formal goal, but nevertheless to show that the restrictions do not prevent 

successful application to a surprisingly wide range of problems. This is the reason why specialist 

research into formal methods can run the risk of being very divisive. An individual researcher, or 

even a whole community of researchers, becomes wholly committed to a particular selection of 

specialisations along each of the axes: say an operational or an algebraic presentation of semantics, 

bisimulation or term rewriting as a proof method, CCS or OBJ as a design notation. The attraction 

of such a choice can be well illustrated in certain applications, such as the analysis of the alternat-

ing bit protocol or the definition of the stack as an abstract data type. The perfectly proper chal-

lenge of the research is to push outwards as far as possible the frontiers of the convenient applica-

tion of the particular chosen formalism. But that is also the danger: the rush to colonise as much 

of the available territory can lead to imperialist claims that deny to other specialisms their right to 

existence. Any suggestion of variation of standard dogma is treated as akin to treason. This ten-

dency can be reinforced by the short-sightedness of funding agencies~ which encourage exagger-

ated claims to the universal superiority of a single notation and technique. 

The consequences of the fragmentation of research into rival schools is inevitable: the theorists 

become more and more isolated, both from each other and from the world of practice, where one 

thing is absolutely certain: that there is no single cure for all diseases. There is no single theory for 

all stages of the development of the software, or for all components even of a single application 

program. Ideas, concepts, methods, and calculations will have to be drawn from a wide range of 

theories, and they are going to have to work together consistently, with no risk of misunderstand-

ing, inconsistency or error creeping in at the interfaces. One effective way to break formal barriers 

is for the best theorists to migrate regularly between the research schools, in the hope that results 

obtained in one research specialisation can be made useful in a manner acceptable by the other. 

The interworking of theories and paradigms can also be explored from the practical end by means 

of the case study, chosen as a simplified version of some typical application. In my view, a case 

study that constructs a link between two or more theories, used for different purposes at different 

levels of abstraction, will be more valuable than one which merely presents a single formalisation, 

in the hope that its merits, compared with rival formalisations, will be obvious. They usually are, 

but unfortunately only to the author. 

Since theories will have to be unified in application, the best help that advanced research can 

give is to unify them in theory first. Fortunately, unification is something that theoretical research 

is very good at, and the way has been shown again and again in both science and mathematics. 

Examples from science include the discovery of the atomic theory of matter as a unified framework 

for all the varied elements and components of chemistry; similarly, the gravitational field assimi-

lates the movement of the planets in the sky and cannon balls on earth. In mathematics, we see 

how topology unifies the study of continuity in all the forms encountered in geometry and analysis, 

how logic explains the valid methods of reasoning in all branches of mathematics. I would suggest 

the current strength of individual specialisation in theoretical computing science should be bal-

anced by a commitment from the best and most experienced researchers to provide a framework 

in which all the specialisations can be seen as just aspects or variations of the same basic ideas. 

Then it will be clear how both existing and new specialisations are all equally worthy of effort to 



14 

 

deepen the theory or broaden its application. But the aim is no longer to expand and colonise the 

whole space but rather to find the natural boundaries at which one theory can comfortably coexist 

and cooperate with its neighbours. Closing a gap between one theory and another is just as im-

portant as closing the gap between theory and practice; and just as challenging. 

8 Acknowledgments 

I am very grateful to many programmers and managers working in industry, who have made 

available to me the benefits of their judgment and long experience. In particular, I would like to 

praise the leading practitioners of the state of the art in IBM at Hursley, in BNK at Maidenhead, 

and in Digital at Nashua. Many contributions to my thinking are due to members of IFIP WG2.3 

on Programming Methodology, and to its chairman Cliff Jones, who made useful suggestions to 

the previous draft of the paper. Finally, thanks to those named in the paper, with apologies for lack 

of more formal reference. 

 

 

 


