
The PlusCal Algorithm Language

Leslie Lamport

Microsoft Research

2 January 2009
minor corrections 13 April 2011 and 23 October 2017

Abstract

Algorithms are different from programs and should not be described with
programming languages. The only simple alternative to programming lan-
guages has been pseudo-code. PlusCal is an algorithm language that can be
used right now to replace pseudo-code, for both sequential and concurrent
algorithms. It is based on the TLA+ specification language, and a PlusCal
algorithm is automatically translated to a TLA+ specification that can be
checked with the TLC model checker and reasoned about formally.

Contents

1 Introduction 1

2 Some Examples 4
2.1 Euclid’s Algorithm . 4
2.2 The Quicksort Partition Operation 6
2.3 The Fast Mutual Exclusion Algorithm 8
2.4 The Alternating Bit Protocol 12

3 The Complete Language 15

4 The TLA+ Translation 16
4.1 An Example . 16
4.2 Translation as Semantics . 19
4.3 Liveness . 21

5 Labeling Constraints 23

6 Conclusion 25

References 28

Appendix: The C-Syntax Grammar 30

1 Introduction

PlusCal is a language for writing algorithms, including concurrent algo-
rithms. While there is no formal distinction between an algorithm and a
program, we know that an algorithm like Newton’s method for approxi-
mating the zeros of a real-valued function is different from a program that
implements it. The difference is perhaps best described by paraphrasing
the title of Wirth’s classic book [19]: a program is an algorithm plus an
implementation of its data operations.

The data manipulated by algorithms are mathematical objects like num-
bers and graphs. Programming languages can represent these mathematical
objects only by programming-language objects like bit strings and pointers,
introducing implementation details that are irrelevant to the algorithm. The
customary way to eliminate these irrelevant details is to use pseudo-code.
There are two obvious problems with pseudo-code: it has no precise mean-
ing, and it can be checked only by hand—a notoriously unreliable method
of finding errors.

PlusCal is designed to replace pseudo-code for describing algorithms. A
PlusCal algorithm is translated to a TLA+ specification [12]. That speci-
fication can be debugged (and occasionally even completely verified) with
the TLC model checker [20]. A TLA+ specification is a formula of TLA, a
logic invented expressly for proving properties of systems, so properties of
an algorithm can be proved by reasoning about its translation.

There are other languages that might be satisfactory replacements for
pseudo-code in a Utopian world where everyone has studied the language.
A researcher can use PlusCal in his next paper; a professor can use it in
her next lecture. PlusCal code is simple enough that explaining it is almost
as easy as explaining the pseudo-code that it replaces. I know of no other
language that can plausibly make this claim and has the expressive power to
replace pseudo-code for both sequential and concurrent algorithms. Other
languages used to describe algorithms are discussed in the conclusion.

PlusCal’s simplicity comes from its simple, familiar programming lan-
guage constructs that make it resemble a typical toy language. For example,
here is the “Hello World” program:

--algorithm HelloWorld
begin print “Hello, world.”
end algorithm

PlusCal has the expressive power to replace pseudo-code because of its rich
expression language. A PlusCal expression can be any expression of TLA+,

1

which means it can be anything expressible in set theory and first-order logic.
This gives PlusCal’s expression language all the power of ordinary mathe-
matics, making it infinitely more powerful than the expression language of
any programming language.

Programming languages have two other deficiencies that make them un-
suitable as algorithm languages:

• They describe just one way to compute something. An algorithm
might require that a certain operation be executed for all values of
i from 1 to N ; most programming languages must specify in which
order those executions are performed. PlusCal provides two simple
constructs for expressing nondeterminism.

• Execution of an algorithm consists of a sequence of steps. An algo-
rithm’s computational complexity is the number of steps it takes to
compute the result, and defining a concurrent algorithm requires speci-
fying what constitutes a single (atomic) step. Programming languages
provide no well-defined notion of a program step. PlusCal uses labels
to describe an algorithm’s steps.

Describing the grain of atomicity is crucial for concurrent algorithms,
but is often unimportant for sequential algorithms. Labels can there-
fore be omitted and the translator instructed to choose the steps, which
it makes as large possible to facilitate model checking.

PlusCal combines five important features: simple conventional program con-
structs, extremely powerful expressions, nondeterminism, a convenient way
to describe the grain of atomicity, and model checking. The only novel
aspect of any of these features is the particular method of using labels to
indicate atomic actions. While the individual features are not new, their
combination is. PlusCal is the only language I know of that has them all.
This combination of features makes it ideal for writing algorithms.

PlusCal can be used not only in publications and in the classroom, but
also in programming. Although most programming involves simple data
manipulation, a program sometimes contains a nontrivial algorithm. It is
more efficient to debug the algorithm by itself, rather than debugging it and
its implementation at the same time. Writing the algorithm in PlusCal and
debugging it with TLC before implementing it is a good way to do this.

Being easy to read does not necessarily make PlusCal easy to write. Like
any powerful language, PlusCal has rules and restrictions that are not imme-
diately obvious. Because of its inherent simplicity, the basic language should
not be hard to learn. What many programmers and computer scientists will

2

find hard is learning to take advantage of the power of the expression lan-
guage. TLA+ expressions use only basic math—that is, predicate logic, sets,
and functions (which include tuples and records). However, many computer
scientists would have difficulty describing even something as simple as a
graph in terms of sets and functions. With PlusCal, the writer of an algo-
rithm can reveal to the reader as much or as little of the underlying math
as she wishes.

PlusCal’s features imply its limitations. Programming languages are
complex because of constructs like objects and variable scoping that are
useful for writing large programs. PlusCal’s simplicity limits the length of
the algorithms it can conveniently describe. The largest algorithm I have
written in it is about 500 lines. I expect that PlusCal would not work
well for algorithms of more than one or two thousand lines. (However, a
one-line PlusCal assignment statement can express what in a programming
language requires a multi-line loop or the call of a complicated procedure.)
Programming languages are inexpressive because they must yield efficient
code. While it is possible to restrict PlusCal so it can be compiled into
efficient code, any such restriction would reduce its utility for writing algo-
rithms. PlusCal is for writing algorithms, not for writing large specifications
or efficient programs.

The semantics of PlusCal is specified formally by its translation to TLA+.
A TLA+ specification of the translation is included in the PlusCal distribu-
tion, which is available on the Web [8]. (The translator, which is written in
Java, has the option of performing the translation by executing this spec-
ification with TLC.) The translation is described in Section 4. However,
except for its expressions, PlusCal is so simple and most of its constructs
so banal that there is no need to give a rigorous semantics here. Instead,
the language is explained in Section 2 by a series of examples. Section 3
describes the few features not contained in the examples, and Section 5
completes the language description by explaining the constraints on where
labels may and may not appear. To convince the reader that nothing is
being hidden, a grammar of the full language (excluding its expressions)
appears in the appendix. A language manual is available on the PlusCal
Web site.

No attempt is made here to describe the complete language of TLA+

expressions. The TLA+ notation used in the examples is explained only
where it does not correspond to standard mathematical usage. The PlusCal
language manual briefly explains TLA+ and its expressions. The semantics
of TLA+ expressions is trivial in the sense that a semantics consists of a
translation to ordinary mathematics, and TLA+ expressions are expressions
of ordinary mathematics. A precise explanation of all the TLA+ operators

3

that can appear in a PlusCal expression is given in Section 16.1 of the TLA+

manual [12].

2 Some Examples

A PlusCal algorithm can be written in either of two syntaxes—the clearer
but longer p-syntax (p for prolix), or the more compact c-syntax that will
look familiar to most programmers. The first two examples use the p-syntax;
the next two use the c-syntax. The grammar given in the appendix is for
the c-syntax.

2.1 Euclid’s Algorithm

The first example is a simple version of Euclid’s algorithm from Sedgewick’s
textbook [18, page 8]. The algorithm computes the GCD of two natural
numbers m and n by setting u to m and v to n and executing the following
pseudo-code.

while u 6= 0 do
if u < v then swap u and v end if ;
u : = u − v

end while ;

Upon termination, v equals the GCD of m and n. The PlusCal version
appears in Figure 1 on this page. (Symbols are actually typed as ascii
strings—for example, “∈” is typed “\in”.) The variable declarations assert
that the initial values of m and n are in the set 1 . .K of integers from 1
through K , and that u and v initially equal m and n, respectively. (We will
see later where K is declared.) Assignment statements separated by || form a

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin while u 6= 0 do

if u < v then u : = v || v : = u end if ;
u : = u − v

end while ;
assert IsGCD(v , m, n)

end algorithm

Figure 1: Euclid’s algorithm in PlusCal.

4

module Euclid

extends Naturals, TLC

constant K

Divides(i , j)
∆
= ∃ k ∈ 0 . . j : j = i ∗ k

IsGCD(i , j , k)
∆
= Divides(i , j)
∧ Divides(i , k)
∧ ∀ r ∈ 0 . . j ∪ 0 . . k :

Divides(r , j) ∧Divides(r , k)⇒ Divides(r , i)

(∗ --algorithm EuclidSedgewick
. . .
end algorithm ∗)

* begin translation
Translator puts TLA+ specification here

* end translation

Figure 2: The module containing the PlusCal code for Euclid’s algorithm.

multi-assignment, executed by first evaluating all the right-hand expressions
and then performing all the assignments. The assert statement checks the
correctness of the algorithm, where IsGCD(v , m, n) will be defined to be
true iff v is the GCD of m and n, for natural numbers v , m, and n.

The algorithm appears in a comment in a TLA+ module, as shown in Fig-
ure 2 on this page. The module’s extends statement imports the Naturals
module, which defines arithmetic operators like subtraction and “ . .”, and a
special TLC module that is needed because of the algorithm’s assert state-
ment. The constant declaration declares the algorithm parameter K . The
module next defines Divides(i , j) to be true for natural numbers i and j iff
i divides j , and it uses Divides to define IsGCD .

The translator inserts the algorithm’s translation, which is a TLA+ spec-
ification, between the begin and end translation comment lines, replac-
ing any previous version. The translator also writes a configuration file that
controls the TLC model checker. We must add to that file a command that
specifies the value of K . TLC checks that the assertion is satisfied and that
execution terminates for all K 2 possible choices of the variables’ initial val-
ues. For K = 50, this takes about 25 seconds. (All execution times are for
a 2.4 GHz personal computer.)

5

Remarks

The operation of swapping u and v can of course be expressed without a
multiple assignment by declaring an additional variable t and writing:

t : = u; u : = v ; v : = t

It can also be written as follows.

with t = u do u : = v ; v : = t end with

The with statement declares t to be local to the do clause.
Instead of restricting m and n to lie in the range 1 . .K , it would be more

natural to allow them to be any positive integers. We do this by replacing
1 . .K with the set of positive integers; here are three ways to express that
set in TLA+, where Nat is defined in the Naturals module to be the set of
all natural numbers:

Nat \ {0} {i ∈ Nat : i > 0} {i + 1 : i ∈ Nat}

To check the resulting algorithm, we would tell TLC to substitute a finite
set of numbers for Nat .

As this example shows, PlusCal is untyped. Type correctness is an in-
variance property of an algorithm asserting that, throughout any execution,
the values of the variables belong to certain sets. A type invariant for al-
gorithm EuclidSedgewick is that the values of u and v are integers. For a
type invariant like this whose proof is trivial, a typed language allows type
correctness to be verified by type checking. If the proof is not completely
trivial, as for the type invariant that u and v are natural numbers, type
correctness cannot be verified by ordinary type checking. (If natural number
is a type, then type checking is undecidable for a Turing complete language
with subtraction.) These type invariants are easily checked by TLC.

2.2 The Quicksort Partition Operation

What most distinguishes the version of Euclid’s algorithm given above from
a program in an ordinary language is the expression IsGCD(v , m, n). It
hints at the expressive power that PlusCal obtains by using TLA+ as its
expression language. I now present a more compelling example of this: the
partition operation of the quicksort algorithm [4].

Consider a version of quicksort that sorts an array A[1], . . . , A[N] of
numbers. It uses the operation Partition(lo, hi) that chooses a value pivot
in lo . . (hi −1) and permutes the array elements A[lo], . . . ,A[hi] to make

6

A[i] ≤ A[j] for all i in lo . . pivot and j in (pivot + 1) . . hi . It is easy to
describe a particular implementation of this operation with a programming
language. The following PlusCal statement describes what the operation
Partition(lo, hi) is supposed to do, not how it is implemented. The code
assumes that Perms(A) is defined to be the set of permutations of A.

with piv ∈ lo . . (hi−1),

B ∈ {C ∈ Perms(A) :
(∀ i ∈ 1 . . (lo − 1) ∪ (hi + 1) . .N : C [i] = A[i])

∧ (∀ i ∈ lo . . piv , j ∈ (piv + 1) . . hi : C [i] ≤ C [j]) }
do pivot : = piv ;

A : = B
end with

This with statement is executed by nondeterministically choosing values of
piv and B from the indicated sets and then executing the do clause. TLC
will check the algorithm with all possible executions of this statement.

The operator Perms is defined in TLA+ as follows, using local definitions
of Auto(S) to be the set of automorphisms of S , if S is a finite set, and of ?
to be function composition. (Arrays are what mathematicians call functions.
In TLA+, [A→ B] is the set of functions with domain A and range a subset
of B , and domain F is the domain of F if F is a function.)

Perms(B)
∆
=

let Auto(S)
∆
= {f ∈ [S → S] : ∀ y ∈ S : ∃ x ∈ S : f [x] = y}

f ? g
∆
= [x ∈ domain g 7→ f [g [x]]]

in {B ? f : f ∈ Auto(domain B)}

Using the description above of the partition operation and this definition
of Perms, TLC will check partial correctness and termination of the usual
recursive version of quicksort for all 4-element arrays A with values in a set
of 4 numbers in about 100 seconds.

Remarks

This example is not typical. It was chosen to illustrate two things: how
nondeterminism can be conveniently expressed by means of the with state-
ment, and the enormous expressive power that PlusCal achieves by its use
of ordinary mathematical expressions. The definition of Perms is the TLA+

statement of one that many mathematicians would write, but few computer

7

ncs: noncritical section;
start : 〈b[i] := true〉;

〈x := i〉;
if 〈y 6= 0〉 then 〈b[i] := false〉;

await 〈y = 0〉;
goto start fi;

〈y := i〉;
if 〈x 6= i〉 then 〈b[i] := false〉;

for j := 1 to N do await 〈¬b[j]〉 od;
if 〈y 6= i〉 then await 〈y = 0〉;

goto start fi fi;
critical section;
〈y := 0〉;
〈b[i] := false〉;
goto ncs

Figure 3: Process i of the Fast Mutual Exclusion Algorithm, based on the
original description. It assumes that initially x = y = 0 and b[i] = false for
all i in 1 . .N .

scientists would. Almost all computer scientists would define Perms(B) by
recursion on the number of elements in B , the way it would be computed
in most programming languages. (Such a definition can also be written in
TLA+.) To appreciate the power of ordinary mathematics, the reader should
try to write a recursive definition of Perms.

A standard computer science education does not provide the familiarity
with simple math needed to make the definition of Perms easy to under-
stand. A textbook writer therefore might not want to include it in a descrip-
tion of quicksort. Because the definition is external to the PlusCal code, the
writer has the option of omitting it and informally explaining the meaning
of Perms(B). On the other hand, a professor might want to take advantage
of the opportunity it provides for teaching students some math.

2.3 The Fast Mutual Exclusion Algorithm

An example of a multiprocess algorithm is provided by the Fast Mutual Ex-
clusion Algorithm [10]. The algorithm has N processes, numbered from 1
through N . Figure 3 on this page is the original description of process num-
ber i , except with the noncritical section and the outer infinite loop made
explicit. Angle brackets enclose atomic operations (steps). For example, the

8

--algorithm FastMutex

{variables x = 0, y = 0, b = [i ∈ 1 . .N 7→ false] ;

process (Proc ∈ 1 . .N)

variable j ;

{ ncs: skip ; (∗The Noncritical Section ∗)
start : b[self] : = true ;

l1: x : = self ;
l2: if (y 6= 0) { l3: b[self] : = false ;

l4: await y = 0 ;
goto start } ;

l5: y : = self ;
l6: if (x 6= self) { l7: b[self] : = false ;

j : = 1 ;
l8: while (j ≤ N) { await ¬b[j] ;

j : = j + 1 } ;
l9: if (y 6= self) { l10: await y = 0 ;

goto start }} ;
cs: skip ; (∗The Critical Section ∗)

l11: y : = 0 ;
l12: b[self] : = false ;

goto ncs }}

Figure 4: The Fast Mutual Exclusion Algorithm in PlusCal.

evaluation of the expression y 6= 0 in the first if statement is performed as a
single step. If that expression equals true, then the next step of the process
sets b[i] to false. The process’s next atomic operation is the execution of
the await statement, which is performed only when y equals 0. (The step
cannot be performed when y is not equal to 0.)

A PlusCal version of the algorithm appears in Figure 4 on this page.
The preceding examples use PlusCal’s p-syntax; this example is written in
PlusCal’s alternative c-syntax. The PlusCal version differs from the original
pseudo-code in the following nontrivial ways.

• It explicitly declares the global variables x , y , and b and their initial
values, as well as the process-local variable j , whose initial value is not
specified. (The TLA+ expression [v ∈ S 7→ e] is the function F with
domain S such that F [v] = e for all v in S .)

• It declares a set of processes with identifiers in the set 1 . .N (one

9

process for each identifier). Within the body of the process statement,
self denotes the identifier of the process.

• The critical and noncritical sections are represented by atomic skip
instructions. (Because TLA specifications are closed under stuttering
steps [9, 12], this algorithm actually describes nonatomic critical and
noncritical sections that can do anything except modify the variables
x , y , b, and j or jump to a different part of the process.)

• The grain of atomicity is expressed by labels. A single atomic step
consists of an execution starting at a label and ending at the next
label. For example, the execution of the test y 6= 0 at label l2 is atomic
because a single step that begins at l2 ends when control reaches either
l3 or l4.

• A while loop implements the original’s for statement.

As this example shows, a PlusCal await statement can occur within a larger
atomic action. A step containing the statement “await P” can be executed
only when P evaluates to true. This statement is equivalent to the dynamic
logic statement “P?” [16].

For this algorithm, mutual exclusion means that no two processes are
simultaneously at control point cs. The translation introduces a variable pc
to represent the control state, where control in process p is at cs iff pc[p]
equals “cs”. Mutual exclusion is therefore asserted by the invariance of:

∀ p, q ∈ 1 . .N : (p 6= q)⇒ ¬((pc[p] = “cs”) ∧ (pc[q] = “cs”))

TLC can check mutual exclusion and the absence of deadlock for all execu-
tions in about 15 seconds for N = 3 and 15 minutes for N = 4. It takes TLC
about 5 times as long to check the absence of livelock as well, assuming weak
fairness of each process’s actions. (Fairness is discussed in Section 4.3.)

Remarks

Observe how similar the PlusCal version is to the pseudo-code, presented
almost exactly as previously published. The 15 lines of pseudo-code are
expressed in PlusCal with 17 lines of statements plus 4 lines of declarations.
Those declarations include specifications of the initial values of variables,
which are not present in the pseudo-code and are expressed by accompanying
text. The extra two lines of PlusCal statements arise from converting a for
to a while. (For simplicity, TLA+ has no for or until statement.)

10

Readers who had never seen PlusCal would need the following explana-
tion of the code in Figure 4.

The process declaration asserts that there are N processes,
numbered from 1 through N , and gives the code for process self .
Execution from one label to the next is an atomic action, and an
await P statement can be executed only when P is true. Vari-
able declarations specify the initial value of variables, b being
initially equal to an array with b[i] = false for each process i .

Compare this with the following explanation that would be needed by read-
ers of the pseudo-code in Figure 3.

The algorithm has N processes, numbered from 1 through N ;
the code of process i is given. Angle brackets enclose atomic
operations, and an await P statement can be executed only
when P is true. Variables x and y are initially equal to 0, and
b[i] is initially equal to false for each process i .

Instead of asserting mutual exclusion by a separate invariant, we can
replace the critical section’s skip statement by the following assertion that
no other process is in its critical section.

assert ∀ p ∈ 1 . .N \ {self } : pc[p] 6= “cs”

Correctness of the algorithm does not depend on the order in which a
process examines other processes’ variables. The published version of the
algorithm used a for loop to examine them in one particular order because
there was no simple standard construct for examining them in an arbitrarily
chosen order. To allow the iterations of the loop body to be performed in
any order, we just replace the corresponding PlusCal code of Figure 4 with
the following.

j : = 1 . .N ;
l8: while (j 6= {}) { with (e ∈ j) { await ¬b[e] ;

j : = j \ {e} } } ;

Weak fairness of each process’s actions prevents a process from remain-
ing forever in its noncritical section—something that a mutual exclusion
algorithm must allow. Absence of livelock should be checked under the
assumption of weak fairness for each process’s actions other than the non-
critical section action. Section 4.3 explains how such a fairness assumption
is asserted.

11

2.4 The Alternating Bit Protocol

Our final example is the alternating bit protocol, which is a distributed
message-passing algorithm [14, Section 22.3]. A sender and a receiver process
communicate over lossy FIFO channels, as pictured here.

Sender Receiver
-

�

msgC

ackC

To send a message m, the sender repeatedly sends the pair 〈m, sbit 〉 on
channel msgC , where sbit equals 0 or 1. The receiver acknowledges receipt
of the message by repeatedly sending sbit on channel ackC . Upon receipt of
the acknowledgement, the sender complements sbit and begins sending the
next message.

The PlusCal version of the algorithm appears in Figure 5 on the next
page. To understand it, you must know how finite sequences are represented
in TLA+’s standard Sequences module. A sequence σ of length N is a func-
tion (array) whose domain (index set) is 1 . .N , where σ[i] is the i th element
of the sequence. The Head and Tail operators are defined as usual, Len(σ)
is the length of sequence σ, and Append(σ, e) is the sequence obtained by
appending the element e to the tail of σ. Tuples are just finite sequences,
so the pair 〈a, b 〉 is a two-element sequence and 〈a, b 〉[2] equals b.

The algorithm assumes that the set Msg of possible messages is defined
or declared and that Remove(i , σ) is the sequence obtained by removing the
i th element of σ if 1 ≤ i ≤ Len(σ). It can be defined in the TLA+ module
by

Remove(i , seq)
∆
= [j ∈ 1 . . (Len(seq)− 1) 7→

if j < i then seq [j] else seq [j + 1]]

The channels msgC and ackC are represented by variables whose values
are finite sequences, initially equal to the empty sequence 〈 〉. The variable
input is the finite sequence of messages that the sender has decided to send
and the variable output is the sequence of messages received by the receiver;
initially both equal the empty sequence.

The operations of sending and receiving a message on a channel are rep-
resented by the macros Send and Rcv . Macros are expanded syntactically.
For example, the statement Send(rbit , ackC) is replaced by

ackC : = Append(ackC , rbit)

12

--algorithm ABProtocol

{variables input = 〈 〉; output = 〈 〉; msgC = 〈 〉; ackC = 〈 〉;

macro Send(m, chan) { chan : = Append(chan,m) }

macro Rcv(v , chan) { await chan 6= 〈 〉;
v : = Head(chan);
chan : = Tail(chan) }

process (Sender = “S”)

variables next = 1; sbit = 0; ack ;

{ s: while (true) {
either with (m ∈ Msg) { input : = Append(input ,m) }
or { await next ≤ Len(input);

Send(〈input [next], sbit 〉, msgC) }
or { Rcv(ack , ackC);

if (ack = sbit) { next : = next + 1;
sbit : = (sbit + 1) % 2 }}}}

process (Receiver = “R”)

variables rbit = 1; msg ;
{ r : while (true) {

either Send(rbit , ackC)
or { Rcv(msg , msgC);

if (msg [2] 6= rbit) { rbit : = (rbit + 1) % 2
output : = Append(output ,msg [1])}}}}

process (LoseMsg = “L”)

{ l : while (true) {
either with (i ∈ 1 . .Len(msgC)) {msgC : = Remove(i ,msgC)}
or with (i ∈ 1 . .Len(ackC)) { ackC : = Remove(i , ackC) }}}

}

Figure 5: The Alternating Bit Protocol in PlusCal.

13

which appends rbit to the sequence ackC . If v and chan are variables
and chan equals a finite sequence, then the operation Rcv(v , chan) can be
executed iff chan is non-empty, in which case it sets v to the first element
of chan and removes that element from chan.

There are three processes: the sender, the receiver, and a LoseMsg pro-
cess that models the lossiness of the channels by nondeterministically delet-
ing messages from them. The process declaration Sender = “S” indicates
that there is a single Sender process with identifier the string “S”; it is equiv-
alent to the declaration Sender ∈ {“S”}. The only new PlusCal construct
in the processes’ code is

either S 1 or S 2 . . . or Sn

which executes S i for a nondeterministically chosen i .
The three processes run forever. The presence of just one label in each

process means that the execution of one iteration of its while statement’s
body is a single atomic action. The sender can either choose a new message
to send and append it to input , send the current message input [next], or
receive an acknowledgement (if ackC is non-empty). The receiver can either
receive a message and, if the message has not already been received, ap-
pend it to output ; or it can send an acknowledgement. A single step of the
LoseMsg process removes an arbitrarily chosen message from either msgC
or ackC . If msgC is the empty sequence, then 1 . .Len(msgC) is the empty
set and only the or clause of the LoseMsg process can be executed. If both
msgC and ackC equal the empty sequence, then the LoseMsg process is not
enabled and can perform no step. (See Section 4.2 below for an explanation
of why this is the meaning of the process’s code.)

The important safety property satisfied by the algorithm is that the
receiver never receives an incorrect message. This means that the sequence
output of received messages is an initial subsequence of the sequence input
of messages chosen to be sent. This condition is asserted by the predicate
output v input , where v is defined by:

s v t
∆
= (Len(s) ≤ Len(t)) ∧ (∀ i ∈ 1..Len(s) : s[i] = t [i])

Section 4.3 discusses the desired liveness property, that every chosen message
is eventually received.

Algorithm ABProtocol has an infinite number of reachable states. The
sequence input can become arbitrarily long and, even if the sender puts
only a single message in input , the sequences msgC and argC can become
arbitrarily long. TLC will run forever on an algorithm with an infinite set

14

of reachable states unless it finds an error. (TLC will eventually exceed the
capacity of some data structure and halt with an error, but that could take
many years because it keeps on disk the information about what states it
has found.) We can bound the computation by telling TLC to stop any
execution of the algorithm when it reaches a state not satisfying a specified
constraint. For example, the constraint

(Len(input) < 4) ∧ (Len(msgC) < 5) ∧ (Len(ackC) < 5)

stops an execution when input has 4 messages or one of the channels has 5
messages. With this constraint and a set Msg containing 3 elements, TLC
model checks the algorithm in 7.5 seconds.

Remarks

It may appear that, by introducing the LoseMsg process, we are forcing the
channels to lose messages. This is not the case. As discussed in Section 4.3
below, an algorithm’s code describes only what steps may be executed; it
says nothing about what steps must be executed. Algorithm ABProtocol ’s
code does not require the LoseMsg process ever to delete a message, or the
Sender process ever to send one. Section 4.3 explains how to specify what
the algorithm must do.

Each process of the algorithm consists of an infinite loop whose body
nondeterministically chooses one atomic action to execute. This structure
is typical of high-level versions of distributed algorithms.

This example shows that PlusCal can easily describe a distributed message-
passing algorithm, even though it has no special constructs for sending and
receiving messages. Adding such constructs could eliminate the four lines
of macros. However, what operations should they specify? Are messages
broadcast or sent on point-to-point channels? Are they always delivered
in order? Can they be lost? Can the same message be received twice?
Different distributed algorithms make different assumptions about message
passing, and I know of no simple construct that covers all possibilities. Any
particular kind of message passing that is easy to explain should be easy to
describe in PlusCal.

3 The Complete Language

We have seen almost all the PlusCal language constructs. The major omis-
sions are the following (written in the p-syntax).

15

• TLA+ has notation for records, where a record is a function whose
domain is a finite set of strings and a.b is syntactic sugar for a[“b”].
PlusCal allows the usual assignment to fields of a record, as in

v .a : = 0; A[0].b : = 42;

TLC will report an error if it tries to execute this code when v is not
a record with an a component or A is not an array with A[0] a record
having a b component. This usually implies that v and A must be
initialized to values of the correct “type”.

• The if statement has optional elsif clauses (only in the p-syntax)
followed by an optional else clause.

• PlusCal has procedure declarations and call and return statements.
Since call is a statement, it does not return a value. The custom-
ary approach of making procedure calls part of expression evaluation
would make specifying steps problematic, and allowing return values
would complicate the translation. Procedures can easily return values
by setting global variables (or process-local variables for multiprocess
algorithms).

• PlusCal has an optional define statement for inserting TLA+ defini-
tions. It goes immediately after the declarations of the algorithm’s
global variables and permits operators defined in terms of those vari-
ables to be used in the algorithm’s expressions.

The description of the language is completed in Section 5, which explains
where labels are forbidden or required.

4 The TLA+ Translation

4.1 An Example

A TLA+ specification describes a set of possible behaviors, where a behavior
is a sequence of states and a state is an assignment of values to variables.
The heart of a TLA+ specification consists of an initial predicate and a
next-state action. The initial predicate specifies the possible initial states,
and the next-state action specifies the possible state transitions. An action
is a formula containing primed and unprimed variables, where unprimed
variables refer to the old state and primed variables refer to the new state.
For example, the action x ′ = x + y ′ specifies all transitions in which the

16

--algorithm EuclidSedgewick
variables m ∈ 1 . .K , n ∈ 1 . .K , u = m, v = n
begin L1: while u 6= 0 do

if u < v then u : = v || v : = u end if ;
L2: u : = u − v

end while ;
assert IsGCD(v , m, n)

Done:
end algorithm

Figure 6: Euclid’s algorithm, showing labels L1 and L2 implicitly added by
the translator and the implicit label Done.

value of x in the new state equals the sum of its value in the old state and
the value of y in the new state.

The translation from PlusCal to TLA+ is illustrated with the version of
Euclid’s algorithm from Section 2.1. The algorithm is shown in Figure 6 on
this page with the two labels, L1 and L2, implicitly added by the translator.
Also shown is the implicit label Done that represents the control point at
the end of the algorithm.

The translation appears in Figure 7 on the next page. It uses the TLA+

notation that a list of formulas bulleted with ∧ or ∨ symbols denotes their
conjunction or disjunction. Indentation is significant and is used to elimi-
nate parentheses. (This notation makes large formulas easier to read, and
engineers generally like it; but it confuses many computer scientists. The
notation can be used in PlusCal expressions.)

The important parts of the translation are the definitions of the initial
predicate Init and the next-state action Next . The predicate Init is obtained
in the obvious way from the variable declaration, with the variable pc that
represents the control state initialized to the initial control point—that is,
to the string “L1”.

Actions L1 and L2 specify the transitions representing execution steps
starting at the corresponding control points. The conjunct pc = “L1” of
action L1 asserts that a transition can occur only in a starting state in
which the value of the variable pc is “L1”. (A conjunct containing no primed
variables is an enabling condition.) The expression unchanged f is an
abbreviation for f ′ = f , so the conjunct unchanged 〈u, v 〉 asserts that the
values of u and v are left unchanged by the transition. The imported TLC
module defines Assert(A,B) to equal A, but TLC halts and prints the value
B and a trace of the current execution if it evaluates the expression when

17

Init
∆
= ∧ m ∈ 0 . .K
∧ n ∈ 1 . .K
∧ u = m
∧ v = n
∧ pc = “L1”

L1
∆
= ∧ pc = “L1”
∧ if u 6= 0 then ∧ if u < v then ∧ u ′ = v

∧ v ′ = u
else unchanged 〈u, v 〉

∧ pc′ = “L2”
else ∧ Assert(IsGCD(v ,m,n), “Failure of assertion at. . . ”)

∧ pc′ = “Done”
∧ unchanged 〈u, v 〉

∧ unchanged 〈m,n 〉

L2
∆
= ∧ pc = “L2”
∧ u ′ = u − v
∧ pc′ = “L1”
∧ unchanged 〈m,n, v 〉

vars
∆
= 〈m,n, u, v , pc 〉

Next
∆
= L1 ∨ L2 ∨ (pc = “Done” ∧ unchanged vars)

Spec
∆
= Init ∧2[Next]vars

Figure 7: The translation of Euclid’s algorithm.

A equals false.
The next-state action Next allows all transitions that are allowed by L1 or

L2, or that leave the tuple vars of all the algorithm variables unchanged (are
stuttering steps [9, 12]) when a terminated state has been reached. This last
disjunct keeps TLC from reporting deadlock when the algorithm terminates.
(An algorithm deadlocks when no further step is possible; termination is just
deadlock we want to occur.) Since every TLA specification allows stuttering
steps, this disjunct does not change the meaning of the specification, just
the way TLC checks it.

Finally, Spec is defined to be the TLA formula that describes the safety
part of the algorithm’s complete specification. Proving that the algorithm
satisfies a safety property expressed by a temporal formula P means proving
Spec ⇒ P . Most PlusCal users can ignore Spec.

18

4.2 Translation as Semantics

A classic way of stating that a programming language is poorly defined is
to say that its semantics is specified by the compiler. A goal of PlusCal was
to make an algorithm’s translation so easy to understand that it is a useful
specification of the algorithm’s meaning. To achieve this goal, the following
principles were maintained:

T1. The only TLA+ variables used in the translation are the ones declared
in the algorithm plus pc. (Algorithms with procedures also use a
variable stack for saving return locations and values of local procedure
variables.)

T2. All identifiers declared or defined in the translation (including bound
variables) are taken from the algorithm text, except for a few standard
ones like Init and Next . (“Algorithm text” includes labels implicitly
added by the translator.)

T3. There is a one-to-one correspondence between expressions in the trans-
lation and expressions in the algorithm. (The only exceptions are the
expressions for pushing and popping items on the stack in the trans-
lation of procedure call and return statements.)

It may seem that PlusCal is so simple that its semantics is obvious. How-
ever, a naive user might be puzzled by what the following statement in a
multiprocess algorithm does when x equals 0:

L1: x : = x − 1; await x ≥ 0; y : = x ;

L2: . . .

Is x decremented but y left unchanged? Is the execution aborted and the
original value of x restored? The statement’s translation is:

L1
∆
= ∧ pc = “L1”
∧ x ′ = x − 1
∧ x ′ ≥ 0
∧ y ′ = x ′

∧ unchanged . . .

Action L1 equals false when x = 0, which is satisfied by no step, so the
statement cannot be executed while x is less than 1. Statement L1 is equiv-
alent to

await x > 0; x : = x − 1; y : = x ;

19

because the two statements’ translations are mathematically equivalent. Re-
alizing this might help users think in terms of what a computation does
rather than how it does it.

Even a fairly sophisticated user may have trouble understanding this
statement:

L1: with i ∈ {1, 2} do await i = 2
end with ;

L2: . . .

Is it possible for an execution to deadlock because the with statement selects
i = 1 and the await statement then waits forever for i to equal 2? The
answer is probably not obvious to readers unfamiliar with dynamic logic.
The translation of statement L1 is:

L1
∆
= ∧ pc = “L1”

∧ ∃ i ∈ {1, 2} : i = 2

∧ pc′ = “L2”

∧ unchanged 〈 . . .〉

It should be clear to anyone who understands simple predicate logic that
the second conjunct equals true, so statement L1 is equivalent to skip.

These two examples are contrived. The first will not occur in practice
because no one will put an await statement after an assignment within a
single step, but the second abstracts a situation that occurs in real examples.
Consider the LoseMsg process in the alternating bit protocol of Figure 5. It
may not be clear what the either/or statement means if one or both chan-
nels are empty. Examining the TLA+ translation reveals that the disjunct
of the next-state action that describes steps of this process is:

∧ pc[“L”] = “l”

∧ ∨ ∧ ∃ i ∈ 1 . .Len(msgC) : msgC ′ = Remove(i ,msgC)

∧ unchanged ackC
∨ ∧ ∃ i ∈ 1 . .Len(ackC) : ackC ′ = Remove(i , ackC)

∧ unchanged msgC
∧ pc′ = [pc except ![“L”] = “l”]

∧ unchanged 〈input , output ,next , sbit , ack , rbit ,msg 〉

(The reader should be able to deduce the meaning of the except construct
and, being smarter than the translator, should realize that the action’s first
conjunct implies that its third conjunct is a complicated way of assert-
ing pc′ = pc.) If msgC is the empty sequence, then Len(msgC) = 0, so

20

1 . .Len(msgC) equals the empty set. Since ∃ i ∈ {} : . . . equals false, this
action’s second conjunct is equal to the conjunct’s second disjunct. Hence,
when msgC equals the empty sequence, a step of the LoseMsg process can
only be one that removes a message from ackC . If ackC also equals the
empty sequence, then the entire action equals false, so in this case the
process can do nothing.

It is not uncommon to specify the semantics of a programming language
by a translation to another language. However, the TLA+ translation can
explain to ordinary users the meanings of their programs. The translation
is written in the same module as the algorithm. The use of labels to name
actions makes it easy to see the correspondence between the algorithm’s
code and disjuncts of the next-state action. (The translator can be directed
to report the names and locations in the code of all labels that it adds.)

The semantics of PlusCal is defined formally by a TLA+ specification
of the translator as a mapping from an algorithm’s abstract syntax tree to
the sequence of tokens that form its TLA+ specification [8]. The part of
the specification that actually describes the translation is about 700 lines
long (excluding comments). This specification is itself executable by TLC.
The translator has a mode in which it parses the algorithm, writes a module
containing the TLA+ representation of the abstract syntax tree, calls TLC to
execute the translation’s specification for that syntax tree, and uses TLC’s
output to produce the algorithm’s TLA+ translation. (The abstract syntax
tree does not preserve the formatting of expressions, so this translation may
be incorrect for algorithms with expressions that use the TLA+ bulleted
conjunction/disjunction list notation.)

4.3 Liveness

An algorithm’s code specifies the steps that may be taken; it does not re-
quire any steps to be taken. In other words, the code specifies the safety
properties of the algorithm. To deduce liveness properties, which assert that
something does eventually happen, we have to add liveness assumptions to
assert when steps must be taken. These assumptions are usually specified as
fairness assumptions about actions [2]. The two common types of fairness
assumption are weak and strong fairness of an action. Weak fairness of ac-
tion A asserts that an A step must occur if A remains continuously enabled.
Strong fairness asserts that an A step must occur if A keeps being enabled,
even if it is also repeatedly disabled.

For almost all sequential (uniprocess) algorithms, the only liveness re-
quirement is termination. It must be satisfied under the assumption that

21

the algorithm keeps taking steps as long as it can, which means under the
assumption of weak fairness of the entire next-state action. (Since there is
no other process to disable an action, weak fairness is equivalent to strong
fairness for sequential algorithms.) The PlusCal translator can be directed
to create the appropriate TLA+ translation and TLC configuration file to
check for termination.

For multiprocess algorithms, there is an endless variety of liveness re-
quirements. Any requirement other than termination must be defined by
the user in the TLA+ module as a temporal-logic formula, and the TLC
configuration file must be modified to direct TLC to check that it is sat-
isfied. The three most common fairness assumptions are weak and strong
fairness of each process’s next-state action and weak fairness of the entire
next-state action—the latter meaning that the algorithm does not halt if
any process can take a step, but individual processes may be starved. The
PlusCal translator can be directed to add one of these three fairness assump-
tions to the algorithm’s TLA+ translation. However, there is a wide variety
of other fairness assumptions made by algorithms. These must be written
by the user as temporal-logic formulas.

As an example, let us return to algorithm ABProtocol of Section 2.4.
A liveness property we might want to require is that every message that
is chosen is eventually delivered. Since the safety property implies that
incorrect messages are not delivered, it suffices to check that enough message
are delivered. This is expressed by the following temporal logic formula,
which asserts that for any i , if input ever contains i elements then output
will eventually contain i elements:

∀ i ∈ Nat : (Len(input) = i) ; (Len(output) = i)

The algorithm satisfies this property under the assumption of strong fairness
of the following operations:

• The sender’s first or clause, which can send a message

• The sender’s second or clause, which can receive an acknowledgement.

• The receiver’s either clause, which can send an acknowledgement.

• The receiver’s or clause, which can receive a message.

The translation defines the formula Sender to be the sender’s next-state
action. It is the disjunction of three formulas that describe the three clauses
of the either/or statement. The first or clause is the only one that can

22

modify msgC , so the action describing that clause is Sender ∧ (msgC ′ 6=
msgC). Similarly, the sender’s last or clause is described by the action
Sender∧(ackC ′ 6= ackC). The relevant receiver actions are defined similarly.
The complete TLA+ specification of the algorithm, with these four strong
fairness conditions, is the following formula:

∧ Spec

∧ SFvars(Sender ∧ (ackC ′ 6= ackC))

∧ SFvars(Sender ∧ (msgC ′ 6= msgC))

∧ SFvars(Receiver ∧ (ackC ′ 6= ackC))

∧ SFvars(Receiver ∧ (msgC ′ 6= msgC))

This specification makes no fairness assumption on the sender’s operation
of choosing a message to send or on the LoseMsg process’s operation of
deleting a message. Those operations need never be executed.

To check the liveness property ∀ i ∈ Nat . . . , we must tell TLC to sub-
stitute a finite set for Nat . With the constraint described in Section 2.4, it
suffices to substitute 0 . . 4 for Nat . It then takes TLC about 3.5 minutes to
check that the algorithm satisfies the liveness property, about 30 times as
long as the 7.5 seconds taken to check safety. This ratio of 30 is unusually
large for such a small example; it arises because the liveness property be-
ing checked is essentially the conjunction of five formulas that are checked
separately—one for each value of i . For a single value of i , the ratio of live-
ness to safety checking is about the same factor of 5 as for the Fast Mutual
Exclusion Algorithm.

Fairness is subtle. Many readers may not understand why these four fair-
ness assumptions are sufficient to ensure that all messages are received, or
why strong fairness of the complete next-state actions of the sender and re-
ceiver are not. The ability to mechanically check liveness properties is quite
useful. Unfortunately, checking liveness is inherently slower than checking
safety and cannot be done on as large an instance of an algorithm. For-
tunately, liveness errors tend to be less subtle than safety errors and can
usually be caught on rather small instances.

5 Labeling Constraints

PlusCal puts a number of restrictions on where labels can and must ap-
pear. They are added to keep the TLA+ translation simple—in particular,
to achieve the principles T1–T3 described in Section 4.2. Here are the re-

23

strictions. (They can be stated more succinctly, but I have split apart some
rules when different cases have different rationales.)

A while statement must be labeled.

Programming languages need loops to describe simple computations; Plus-
Cal does not. For example, it is easy to write a single PlusCal assignment
statement that sets x [i] to the i th prime, for all i in the domain of x . In
PlusCal, a loop is a sequence of repeated steps. Eliminating this restric-
tion would require an impossibly complicated translation.

In any control path, there must be a label between two assignments to the
same variable. However, a single multi-assignment statement may assign
values to multiple components of the same (array- or record-valued) vari-
able.

This is at worst a minor nuisance. Multiple assignments to a variable
within a step can be eliminated by using a with statement—for example,
replacing

x : = f (x); . . . ; x : = g(x , y)

by

with temp = f (x) do . . . ; x : = g(temp, y) end with

A translation could perform such a rewriting, but that would require
violating T2.

A statement must be labeled if it is immediately preceded by an if or either
statement that contains a goto, call, return, or labeled statement within
it.

Without this restriction, the translation would have to either duplicate
expressions, violating T3, or else avoid such duplication by giving expres-
sions names, violating T2.

The first statement of a process or of a uniprocess algorithm must be la-
beled.

This is a natural requirement, since a step is an execution from one label
to the next.

The do clause of a with statement cannot contain any labeled statements.

Allowing labels within a with statement would require the with variables
to become TLA+ variables, violating T1.

24

A statement other than a return must be labeled if it is immediately preceded
by a call ; and a procedure’s first statement must be labeled.

This means that executing a procedure body requires at least one complete
step. There is no need for intra-step procedure executions in PlusCal;
anything they could compute can be described by operators defined in
the TLA+ module.

A statement that follows a goto or return must be labeled.

This just rules out unreachable statements.

A macro body cannot contain any labeled statements.

A macro can be used multiple times within a single process, where it
makes no sense for the same label to appear more than once. Related
to this constraint is the restriction that a macro body cannot contain a
while, call, return, or goto statement.

6 Conclusion

PlusCal is a language for writing algorithms. It is designed not to replace
programming languages, but to replace pseudo-code. Why replace pseudo-
code? No formal language can be as powerful or easy to write. Nothing can
beat the convenience of inventing new constructs as needed and letting the
reader try to deduce their meaning from informal explanations.

The major problem with pseudo-code is that it cannot be tested, and
untested code is usually incorrect. In August of 2004, I did a Google search
for quick sort and tested the first ten actual algorithms on the pages it found.
Of those ten, four were written in pseudo-code; they were all incorrect. The
only correct versions were written in executable code; they were undoubtedly
correct only because they had been debugged.

Algorithms written in PlusCal can be tested with TLC—either by com-
plete model checking or by repeated execution, making nondeterministic
choices randomly. It takes effort to write an incorrect sorting algorithm
that correctly sorts all arrays of length at most 4 with elements in 1 . . 4. An
example of an incorrect published concurrent algorithm and how its error
could have been found by using PlusCal appears elsewhere [13].

Another advantage of an algorithm written in PlusCal is that it has a
precise meaning that is specified by its TLA+ translation. The translation
can be a practical aid to understanding the meaning of the code. Since
the translation is a formula of TLA, a logic with well-defined semantics and

25

proof rules [11], it can be used to reason about the algorithm with any
desired degree of rigor.

We can use anything when writing pseudo-code, including PlusCal.
Pseudo-code is therefore, in principle, more expressive than PlusCal. In
practice, it isn’t. All pseudo-code I have encountered is easily translated to
PlusCal. The Fast Mutual Exclusion Algorithm of Section 2.3 is typical.
The PlusCal code looks very much like the pseudo-code and is just a little
longer, mostly because of variable declarations. Those declarations specify
the initial values of variables, which are usually missing from the pseudo-
code and are explained in accompanying text. What is not typical about the
Fast Mutual Exclusion example is that the pseudo-code describes the grain
of atomicity. When multiprocess algorithms are described with pseudo-code,
what constitutes an atomic action is usually either described in the text or
else not mentioned, leaving the algorithm essentially unspecified. PlusCal
forces the user to make explicit the grain of atomicity. She must explicitly
tell the translator if she wants it to insert labels, which yields the largest
atomic actions that PlusCal permits.

As dramatically illustrated by the quicksort partition example, PlusCal
makes it easy to write algorithms not usually expressed in pseudo-code.
The alternating bit protocol is another algorithm that is not easily written
in ordinary pseudo-code. Of the first ten descriptions of the protocol found
in January of 2008 by a Google search for alternating bit protocol, five were
only in English, four were in different formal languages, and one described
the processes in a pictorial finite-state machine language and the channels
in English. None used pseudo-code. Of these five formal languages, all
but finite-state machines were inscrutable to the casual reader. (Finite-
state machines are simple, but too inexpressive to be used as an algorithm
language.)

PlusCal is a language with simple program structures and arbitrary
mathematical expressions. The existing programming language that most
closely resembles it is SETL [17]. The SETL language provides many of
the set-theoretic primitives of TLA+, but it lacks the ability to define new
operators mathematically; they must be described by procedures for com-
puting them. Moreover, SETL cannot conveniently express concurrency or
nondeterminism.

There are quite a few specification languages that can be used to describe
and mechanically check algorithms. Many of them, including Alloy [7] and
TLA+ itself, lack simple programming-language constructs like semicolon
and while that are invaluable for expressing algorithms clearly and simply.
Some are more complicated than PlusCal because they are designed for sys-

26

tem specifications that are larger and more complicated than algorithms.
Others, such as Spin [6] and SMV [15], are primarily input languages for
model checkers and are little better than programming languages at de-
scribing mathematical operators. Furthermore, many of these specification
methods cannot express fairness, which is an important aspect of concurrent
algorithms. I know of no specification language that combines the expres-
siveness and simplicity of PlusCal.

The one formal language I know of that has the replacement of pseudo-
code as a stated goal is AsmL, the abstract state machine language of Gure-
vich et al. [3]. It is a reasonable language for writing sequential algorithms,
though its use of types and objects make it more complicated and some-
what less expressive than PlusCal. However, while AsmL has ordinary con-
trol statements like while, they can appear only within an atomic step.
This makes AsmL unsuitable for replacing pseudo-code for multiprocess al-
gorithms. Also, it cannot be used to express fairness.

There are a number of toy programming languages that might be used
for writing algorithms. All the ones I know of that can be compiled and ex-
ecuted allow only the simple expressions typical of programming languages.
We could look to paper languages for better constructs than PlusCal’s. Per-
haps the most popular proposals for novel language constructs are Dijkstra’s
guarded commands [1], Hoare’s CSP [5], and functional languages. Guarded
command constructs are easily expressed with either/or and with state-
ments, which provide more flexibility in specifying the grain of atomicity; the
lack of shared variables and dependence on a particular interprocess com-
munication mechanism make it difficult to write algorithms like Fast Mutual
Exclusion and the Alternating Bit Protocol in CSP; and I have never seen
a published concurrent or distributed synchronization algorithm described
functionally. As the basis for an easy-to-understand algorithm language,
it is hard to justify alternatives to the familiar constructs like assignment,
if/then, and while that have been used for decades and appear in the most
popular programming languages.

If simplicity is the goal, why add the await, with, and either/or con-
structs that were shown in Section 4.2 to be subtle? These constructs are
needed to express interprocess synchronization and nondeterminism, and
there are no standard ones that can be used instead. The subtlety of these
constructs comes from the inherent subtlety of the concepts they express.

Finally, one might want to use a different expression language than
TLA+. To achieve expressiveness and familiarity, the language should be
based on ordinary mathematics—the kind taught in introductory math
classes. A number of languages have been designed for expressing math-

27

ematics formally. I obviously prefer TLA+, but others may have different
preferences. A replacement for TLA+ should be suitable not just as an
expression language, but as a target language for a translator and as a lan-
guage for expressing liveness properties, including fairness. It should also
permit model checking of algorithms.

Upon being shown PlusCal, people often ask if it can be used as a pro-
gramming language. One can undoubtedly define subsets of the expression
language that permit compilation into reasonably efficient code. However,
it is not clear if there is any good reason to do so. The features that make
programming languages ill-suited to writing algorithms are there for a rea-
son. For example, strong typing is important in a programming language;
but one reason PlusCal is good for writing algorithms is the simplicity that
comes from its being untyped.

PlusCal is meant to replace pseudo-code. It combines the best features
of pseudo-code with the ability to catch errors by model checking. It is
suitable for use in books, in articles, and in the classroom. It can also be
used by programmers to debug their algorithms before implementing them.

References

[1] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1976.

[2] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[3] Yuri Gurevich. Can abstract state machines be useful in language the-
ory? Theoretical Computer Science, 376(1–2):17–29, 2007.

[4] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the
ACM, 4(7):321, July 1961.

[5] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, August 1978.

[6] Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley,
Boston, 2004.

[7] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256–290,
April 2002.

28

[8] Leslie Lamport. The pluscal algorithm language. URL http://

research.microsoft.com/users/lamport/tla/pluscal.html. The
page can also be found by searching the Web for the 25-letter string
obtained by removing the “-” from uid-lamportpluscalhomepage.

[9] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World
Congress, pages 657–668, Paris, September 1983. IFIP, North-Holland.

[10] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1–11, February 1987.

[11] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[12] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
Also available on the Web via a link at http://lamport.org.

[13] Leslie Lamport. Checking a multithreaded algorithm with +cal. In
Shlomi Dolev, editor, Distributed Computing: 20th International Con-
ference, DISC 2006, volume 4167 of Lecture Notes in Computer Science,
pages 151–163, Berlin, Heidelberg, 2006. Springer-Verlag.

[14] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San
Mateo, California, 1995.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[16] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In
17th Symposium on Foundations of Computer Science, pages 109–121.
IEEE, October 1976.

[17] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Program-
ming with sets: An Introduction to SETL. Springer-Verlag, New York,
1986.

[18] Robert Sedgewick. Algorithms. Addison-Wesley, 1988.

[19] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-
Hall, 1975.

[20] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking
TLA+ specifications. In Laurence Pierre and Thomas Kropf, editors,

29

Correct Hardware Design and Verification Methods, volume 1703 of Lec-
ture Notes in Computer Science, pages 54–66, Berlin, Heidelberg, New
York, September 1999. Springer-Verlag. 10th IFIP wg 10.5 Advanced
Research Working Conference, CHARME ’99.

Appendix: The C-Syntax Grammar

Here is a simplified BNF grammar for PlusCal’s c-syntax. Terminals like
begin are distinguished by font and are sometimes quoted like “(” to avoid
ambiguity. The grammar omits restrictions on where labels may or must
not occur, on what statements may occur in the body of a macro, and on
the use of reserved tokens like if and := in identifiers and expressions.

Algorithm ::= --algorithm Id
{ [VarDecls] [Definitions] Macro∗

Procedure∗ (CompoundStmt | Process+) }

Definitions ::= define { Defs } [;]

Macro ::= macro Id “(” [Id (, Id)∗] “)” CompoundStmt [;]

Procedure ::= procedure Id “(” [PVarDecl (, PVarDecl)∗] “)”
[PVarDecls] CompoundStmt [;]

Process ::= process “(” Id (= | \in) Expr “)”
[VarDecls] CompoundStmt [;]

PVarDecls ::= variable[s] (Id [= Expr] (;|,))+

VarDecls ::= variable[s] (Id [(= | \in) Expr] (;|,))+

CompoundStmt ::= { Stmt [; Stmt]∗ [;] }

Stmt ::= [Id :] (UnlabeledStmt | CompoundStmt)

UnlabeledStmt ::= Assign | If |While | Either |With | | Await | Print |
Assert | skip | return | Goto | [call] Call

Assign ::= LHS := Expr (“||” LHS := Expr)∗

LHS ::= Id (“[” Expr (,Expr)∗ “]” | “.” Id)∗

If ::= if “(” Expr “)” Stmt [else Stmt]

While ::= while “(” Expr “)” Stmt

Either ::= either Stmt (or Stmt)+

30

With ::= with “(” Id (= | \in) Expr
((; | ,) Id (= | \in) Expr)∗ [; | ,] “)” Stmt

Await ::= (await | when) Expr

Print ::= print Expr

Assert ::= assert Expr

Goto ::= goto Id

Call ::= Id “(” [Expr (, Expr)∗] “)”

Id ::= A TLA+ identifier (string of letters, digits, and “ ”s not all digits).

expr ::= A TLA+ expression.

Defs ::= A sequence of TLA+ definitions.

31

	Contents
	1 Introduction
	2 Some Examples
	2.1 Euclid's Algorithm
	2.2 The Quicksort Partition Operation
	2.3 The Fast Mutual Exclusion Algorithm
	2.4 The Alternating Bit Protocol

	3 The Complete Language
	4 The TLA+ Translation
	4.1 An Example
	4.2 Translation as Semantics
	4.3 Liveness

	5 Labeling Constraints
	6 Conclusion
	References
	Appendix: The C-Syntax Grammar

